Announcements

Outline

 Every Joule is Previous: The Case for Revisiting Operating System Design for Energy Efficiency

Battery power as a managed resource

- Little change in basic technology
 - store energy using a chemical reaction
- Battery capacity doubles every 10 years
- Energy density/size, safe handling are limiting factor

Energy density of material	KWH/kg
Gasoline	14
Lead-Acid	0.04
Li polymer	0.15

Energy conserving opportunities

Energy consumed = time * power

 OS: The OS can reduce energy consumption by reducing the time spent in high energy consumption states

 HW: Hardware can reduce energy consumption by reducing the power consumed by high energy consumption states

Hardware advances

- Lower power CPUs
 - disable idle units in CPU to save power
 - e.g. transmeta crusoe chip
 - lower clock frequency to conserve battery
 - e.g. intel speedstep technology
- Displays
 - active matrix LCD
 - reflective displays (uses ambient light for lighting)
- Memory
 - RAMBUS RDRAM provides various power modes
- Batteries not constant source of power
 - pulsed mode is better

Battery power - disk

- Problem:
 - disk spinup,seek / flash memory erase costs

(power values for IBM travelstar)

Operation	Energy Consumption
Spinup	4.7 W
Read/write	2 W
Idle	0.65 W
Seek	1.8 W
Sleep	0.1 W
Standby	0.25 W

- Predictive spin-ups
- Caching/prefetching

Battery power - memory

power aware memory hierarchy - e.g. Rambus

(power values for 128 Mb PC800 RDRAM)

Operation	Energy Consumption
Burst READ	567 mA
Burst WRITE	575 mA
Attention	148 mA
Standby	101 mA
NAP	4.2 mA
Self refresh (low	0.7 mA
_power)	

- each chip can be put into different power modes
- Initial page placement, power transition, page migration

Battery power - network

Transmit, listen, idle costs

(power values for Lucent wavelan 2 Mbps)

Operation	Energy Consumption
Transmit	330 mA
Receive	280 mA
Doze	9 mA

- Power consumed when device is active
- Receiver does not know when sender has data to be sent - continous wait is expensive

Ad-hoc networking

Cooperative routing in a mobile, highly variant scenario

Power Aware Ad-hoc networking

Power consumption exponential with distance

Battery power – application level

- Application aware adaptation to manage high power energy states
 - Managing the power states in a palm
 - Managing battery in a digital camera using image transcoding
 - Application level adaptation to manage energy
 - Client/server computation split

Hypothesis: OS should manage power

- Typical Operating Systems are designed to hide latency (caching), fairly share resources (CPU, memory, network, etc.)
- What about power? If two processes are runnable and one is expected to consume more power, which do you run?
- Do you run cleanup daemon when the battery power is low?

Discussion

