Announcements

- HW 4 due Thursday 11:00 AM
- If you have any questions regarding HW3, Project Proposal and Midterm, please drop by during the office hour (or by appt)

Outline

- Introduction to cryptography
 - Technology aspects
 - Encryption: asymmetric key, symmetric key
 - Authentication and access control
 - Social aspects

Risk analysis

- Important to understand threat and perform risk analysis
 - No system is "secure", systems usually trade security for performance, ease of use etc.
 - If information is worth x and it costs y to break into system and if (x < y), then not worth encryption
 - Wasteful to build a system that is more secure than is necessary
 - Ssh in CS dept good
 - Denying news server access from outside UGA bad
 - Palm pilots may not require powerful encryption systems if they are expected to be physically secure

End-to-end argument

- End-to-end argument is appropriate for building a secure system
 - Perform security at lower levels if simple and does not impact performance
 - Higher levels usually know best regarding data integrity requirements

Security Attacks

- Social engineering attacks
 - Preys on people gullibility (good nature), hardest to defend
 - E.g. I once got an unlisted number from a telephone operator because I sounded desperate (I was, but that was not the point)
 - E.g. If I walk in with coupla heavy looking boxes into the elevator to go to Boyd 5th floor (at night) would you let me in? You can go into "secure" companies by looking like you "belong" there
- Denial of service attacks
 - Network flooding, Distributed DOS, holding resources, viruses

Common technology - firewalls

- Firewalls are used to restrict the kinds of network traffic in/out of companies
 - Application level proxies
 - Packet level firewalls
- Does not prevent end-to-end security violations
 - People sometimes email list of internal computer users outside firewall to scrupulous "researchers"
 - Emails viruses exploit certain vulnerabilities in VBS to get around firewalls

Encryption methods

- Symmetric cryptography
 - Sender and receiver know the secret key (apriori)
 - Fast encryption, but key exchange should happen outside the system
- Asymmetric cryptography

- Each person maintains two keys, public and private
 - $M \equiv PrivateKey(PublicKey(M))$
 - M = PublicKey (PrivateKey(M))
- Public part is available to anyone, private part is only known to the sender
- E.g. Pretty Good Privacy (PGP), RSA

My Public Key

----BEGIN PGP PUBLIC KEY BLOCK-----

Version: PGPfreeware 7.0.3 for non-commercial use <http://www.pgp.com>

mOGiBDgtLPwRBADnG0+91kDv18t/3wdL3CSO4DytEH0NjrNwAYY1aewp3MklsxkP p6iVblwiiCH4T4Ngkaru+kaEQ1hSTa7E/F9yQCWN5J0u1U7mtgTKFyt7VG0txAVx tV7TuyxNogJkpm2BqoKqqUdCdbm+GurX/G2ynbINjEOvhcy0i1ttxgyDrwCg/8HZ tM0i06VVNcR/QCmA+JdHGwMEAIjXLVV97huEtpuWDiq4J53ecV3HXQm6XoUZq4Sc n+nsvXe4UD+6ldub/riOqBy22fBBAKhUsM3lGFqr7h19X3RGdw/yBVox+BLajpW+ F+ddjJAVSFeTvNanhnXL9a3nwCThb4aEUTdD61kqoUWJ12BnsK1DUSo2X6AsZYo+ GknOA/92dUNYUzspPLkXvPjOo+uJErZA4aN+UYsJwD3A1YugVLkc3nQBQySO4bAR XitjnN0DA6Kz/j6e+cgReCyEuBnPtaY/Nn/dAn11gUlJ/EtKQ9J4krI3+RxRmlpY UtWyTaakV/QCXkB/yB9i6iAfsCprlcRSpmZAGuNXr+pHTHB0ILQmU3VyZW5kYXIg Q2hhbmRyYSA8c3VyZW5kYXJAY3MudWdhLmVkdT6JAFqEEBECABqFAjqtLPwICwMJ CAcCAQoCGQEFGwMAAAAACgkQlU7dFVWfeisqTACfXxU9a1mbouW2nbWdx6MHatQ6 TOqAoM9W1PBRW8Iz3BIqcnSsZ2UPNJHDuQINBDqtLPwQCAD2Qle3CH8IF3Kiutap QvMF6PlTETlPtvFuuUs4INoBp1ajFOmPQFXz0AfGy0OplK33TGSGSfgMg7116RfU odNQ+PVZX9x2Uk89PY3bzpnhV5JZzf24rnRPxfx2vIPFRzBhznzJZv8V+bv9kV7H AarTW56NoKVyOtQa8L9GAFgr5fSI/VhOSdvNILSd5JEHNmszbDgNRR0PfIizHHxb LY7288kjwEPwpVsYjY67VYy4XTjTNP18F1dDox0YbN4zISy1Kv884bEpOBgRjXyE pwpylobEAxnIByl6ypUM2Zafq9AKUJsCRtMIPWakXUGfnHy9iUsiGSa6q6Jew1Xp Mqs7AAICCACLxNC3Vth553Y90JCVyM9mPWzvrkjfEGfBiCFDZ0HONW81ywUyV6jT O/1sUsgR7jGB26XBsnIY96a9WTpUoI+20YstFLRj8sXOVXuaP/YTmgSLv8206SWd Bze1S0YJcU31/zdCftsz67UWT8vg39yeGyQ5KQP83p9DKpi4Z5K4M29p8eCt9BY+ kid94h9+16ZT8JLF0iEwGapZvpaTucCNoC8t6CKPto0dGpkYp7uBYoSzLgNvUh2n BjGVEmLuioabgbOaomDErITY2iNcW3CCgjjYvgg/Hnu7HB2xKzuVUN1NTGogcuNI Yx88mi+d/HxTY6YNr9xNW0f0pWkZDVB0iQBMBBgRAgAMBQI6rSz8BRsMAAAAAAOJ EJVO3RVVn3orYhIAoIQPxGvHmX8c6kaAZqko1zYCeixcAJ9tp5h/KQZrIN/BpyTW 9Xgv4qxKEA==

=Pv50

Mar 13, 2001

----END PGP PUBLIC KEY BLOCK-----

CSCI {4,6}900: Ubiquitous Computing

RSA

- Named after Rivest, Shamir and Adleman ('morrow)
 Only receiver receives message:
 - Encode message using receivers public key
 - Only sender could've sent the message
 - Encode message using sender's private key
 - Only sender could've sent the message and only receiver can read the message
 - Encode message using receivers public key and then encode using our private key

Strength

- Strength of crypto system depends on the strengths of the keys
- Computers get faster keys have to become harder to keep up
- If it takes more effort to break a code than is worth, it is okay
 - Transferring money from my bank to my credit card and Citibank transferring billions of dollars with another bank should not have the same key strength

Public Key Infrastructure (PKI)

- Process of issuing, delivering, managing and revoking public keys
- E.g. Secure Sockey Layer (SSL)
 - Client C connects to Server S
 - 1. C requests server certificate from S
 - 2. S sends server certificate with Spublic to C
 - 3. C verifies validity of Spublic
 - 4. C generate symmetric key for session
 - 5. C encrypts Csymmetric using Spublic
 - 6. C transmits Csymmetric(data) and Spublic(Csymmetric) to S

Authentication

- Identification verification process
 - E.g. kerberos certificates, digital certificates, smart cards
- Used to grant resources to authorized users

Discussion

CSCI {4,6}900: Ubiquitous Computing

13