
Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 2

Outline

• Time, clocks and the ordering of events in a
Distributed System Leslie Lamport

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 3

Problem – happens before relationship

• The notion of time or “happens before” relationship
is fundamental in computer systems

E.g. open(), read(), write(), close(). We want open() to
happen before the read() and close() to happen after
read() and write().

e.g. Airlines reservation: Reservation is granted if it is
made before flight is full.

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 4

Happens before in distributed systems

• Distributed systems are a bunch of systems that
communicate with each other. These messages
take a finite time to propagate. The time taken varies
between different machines. Messages can also
arrive out of order among machines.

• When two systems issue the open() and read(), it is
sometimes impossible to tell which happened before
the other (depending on the message delays)

• It is hard to maintain physical time across machines

• Hence, it is important to understand time and
ordering of events within distributed systems.

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 5

Partial ordering

• Assume that the system is made of a number of
processes. Each process consists of a sequence of
events.

• “happens before” relationship:
– If a and b are events in the same process, a comes before

b, then a happens before b.

– If a is the sending a message and b is the receipt of it,
then a happens before b.

– If a happens before b and b happens before c, then a
happens before c

• If a does not happen before b and b does not
happen before a, a and b are concurrent

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 6

Partial Ordering

• p3 and q3 are concurrent.

Process P Process Q Process R
p4

p3

p2

p1

q7
q6

q5
q4

q3

q2

q1

r4

r3

r2

r1

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 7

Logical clocks

• Clock is just a way of assigning a number to an
event, number is thought of the time at which the
event occurred.

• Clock C for each process P is a function that assigns
a number Ci<a> to any event a.

• Clock condition:
– For any event a, b: if a happens before b, then C(a)<C(b)

• Happens before condition holds if:
– a and b are events in process P, and a comes before b,

then C(a) < C(b)
– a is the sending of a message and b is the receipt then

C(a)<C(b)

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 8

Implementable clock condition

1. Each process P, increments C between any two
successive events

2. If event a is the sending of a message m by
process Pi, then the message m contains a
timestamp Tm=Ci(a). Upon receiving a message
m, process Pj sets Cj greater than or equal to its
present value and greater than Tm.

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 9

Total ordering of events

• We can use a system of clocks satisfying the clock
condition to place a total ordering on the set of all
system events. We order events by the times at
which they occur. To break ties, we use any
arbitrary total ordering of the processes
– If a is an event in Pi and b is an event in Pj, then a⇒b iff

• Ci(a) < Cj(b) or

• Ci(a) = Ci(b) and Pi < Pj

• Total ordering depends on the clocks (C). Partial
ordering is absolute

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 10

Application

• Algorithm for granting a resource which satisfies:
1. A process which has been granted the resource must

release it before it can be granted to another process

2. Different requests for the resource must be granted in
the order in which they are made

3. If event process which is granted the resource eventually
releases it, then every request is eventually granted

Central server based approaches that use the time
received to grant resources does not work if two
request take different times to reach the service

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 11

Physical clocks

• To synchronize clocks:
– Sender sends message with time stamp

– Receiver receives responses. The difference in expected
and unexpected delay is the clock drift.

• They derive a bound on time taken to synchronize
clocks.

Feb 15, 2001 CSCI {4,6}900: Ubiquitous Computing 12

Discussion

