
Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 1

Announcements

• Tomorrow’s class is officially cancelled. If you need 
someone to go over the reference implementation of 
HW 2, we can ask Vivek Kaluskar to go over his 
code



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 2

Outline

• Managing Update Conflicts in Bayou, a Weakly 
Connected Replicated Storage System Douglas B. 
Terry, Marvin M. Theimer, Karin Petersen, Alan J. 
Demers, Mike J. Spreitzer and Carl H. Hauser. In 
ACM Symposium on Operating Systems Principles 
(SOSP ’95)

– Epidemic algorithms

– Serverless file system from MSR

http://www.parc.xerox.com/csl/projects/bayou/



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 3

Bayou Write Operation

Bayou_Write(update, dependencyCheck, mergeproc)

{

IF (DB_Eval(dependency_check.query) <>

dependency_check.expected_result)

resolved_update = Interpret(mergeproc);

ELSE

resolved_update = update;

DB_Apply(resolved_update);

}



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 4

Example Scenario

• Three users A, B and C & three replicas X, Y and Z

• They write data items as follows:
– A:<X,1>, A:<X,5>, A:<X,10>

– B:<Y,1>, B:<Y,5>, B:<Y,10>

– C:<Z,1>, C:<Z,5>, C:<Z,10>

• A performs anti-entropy with B at <X,6> and B at 
<Y,4>. C performs anti-entropy with B at <Y,7> and 
C at <Z:3>



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 5

Example scenario

• B will undo update from A, apply C and then A

A:X

A:1

A:5

A:10

B:Y

B:1

B:5

B:10

C:Z

C:1

C:5

C:10



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 6

Example scenario - Undos

• Support A&C at A:<X,8>, C:<Z,2> & A:<X:10>, B:<Y:8>

A:X

A:1

A:5

A:10

B:Y

B:1

B:5

B:10

C:Z

C:1

C:5

C:10



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 7

Conflict detection and resolution

• Dependency checks allow for application-specific 
conflict detection
– Used to detect write-write conflict – two users update the 

same items without observing the other’s update 

– Dependency check for data items that write depended on

• Merge procedures allow for application-specific 
conflict resolution
– Merge procedures are specific to each write

– Bayou allows replicas to be accessible even when 
mergeprocs fail



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 8

Replica Consistency

• Eventual consistency – anti-entropy process

• Write are performed in the same, well-defined order 
at all servers

• Conflict detection and resolution are deterministic 

• It is impossible to know if merge procedures are 
commutative



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 9

Write Stability and Commitment

• Primary commit scheme – One server takes 
responsibility for committing updates

• Writes from different servers may commit in a 
different order based on when the servers perform 
anti-entropy with the primary and each other



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 10

Applying Sets of Writes to Database

• Receive_Writes(writeset, received_from) {
IF (received_from = CLIENT) {

logicalclock = MAX(systemclock, logicalclock+1);

write = First(writeset)

write.WID = {logicalclock, myServerId};

write.state = TENTATIVE;

WriteLogAppend(write)

BayouWrite(write.update,write.dependency,write.merge)

} ELSE {

find insertion point;

rollback till insertion point

rollback from insertion point

logicalclock = MAX(logicalclock, write.WID.timestamp);

}



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 11

Access Control

• Certificates – Grant, delegate and revoke

• Certificates are shared via anti-entropy



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 12

Replica Selection

• Users specify expected session guarantee

• Users can choose based on network connectivity, 
usage patterns etc.



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 13

Session guarantees

• Read Your Writes - read operations reflect previous 
writes. 
– Users and applications find it particularly confusing if they 

update a database and then immediately read from the 
database only to discover that the update appears to be 
missing. This guarantee ensures that the effects of any 
Writes made within a session are visible to Reads within 
that session. In other words, Reads are restricted to 
copies of the database that include all previous Writes in 
this session 



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 14

Session guarantees

• Monotonic Reads - successive reads reflect a non-
decreasing set of writes. 
– The Monotonic Reads guarantee permits users to observe a database 

that is increasingly up-to-date over time. It ensures that Read 
operations are made only to database copies containing all Writes 
whose effects were seen by previous Reads within the session. 

– A user's appointment calendar is stored on-line in a replicated 
database where it can be updated by both the user and automatic 
meeting schedulers. The user's calendar program periodically 
refreshes its display by reading all of today's calendar appointments 
from the database. If it accesses servers with inconsistent copies of 
the database, recently added (or deleted) meetings may appear to
come and go. The MR-guarantee can effectively prevent this since it 
disallows access to copies of the database that are less current than 
the previously read copy



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 15

Session guarantees

• Writes Follow Reads - writes are propagated after 
reads on which they depend. 
– The Writes Follow Reads guarantee ensures that 

traditional Write/Read dependencies are preserved in the 
ordering of Writes 

– Consider a weakly consistent replicated bulletin board 
database that requires users to post articles or to reply to 
articles by performing database Writes. The WFRP-
guarantee can be used within this system to ensure that 
users see the replies to a posted article only after they 
have seen the original. A user who replies to an article 
must simply issue the reply in the same session as used 
to read the article being replied to. Users who are only 
reading articles need not request any guarantees



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 16

Session guarantees
• Monotonic Writes - writes are propagated after writes that 

logically precede them.
– a Write is only incorporated into a server's database copy if the copy 

includes all previous session Writes; the Write is ordered after the 
previous Writes. 

– Consider a replicated database containing software source code. 
Suppose that a programmer updates a library to add functionality in an 
upward compatible way. This new library can be propagated to other 
servers in a lazy fashion since it will not cause any existing client 
software to break. However, suppose that the programmer also 
updates an application to make use of the new library functionality. In 
this case, if the new application code gets written to servers that have 
not yet received the new library, then the code will not compile
successfully. To avoid this potential problem, the programmer can 
create a new session that provides the MW-guarantee and issue the 
Writes containing new versions of both the library and application 
code within this session.



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 17

Performance

• Size is acceptable

• Write performance is acceptable



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 18

Future

• Partial Databases
– Carry part of the database instead of the entire database 

(mobile clients do not have enough storage space)

The problem is that, if a client did not have a particular 
record, was it because it didn’t replicate that part of 
because it didn’t know about it?

Need some sort of “death certificates”



Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 19

Discussion


