
Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 1

Eager Replication and mobile nodes

• Read on disconnected clients may give stale data

• Eager replication prohibits updates if any node is
disconnected

R
R

R

R R
R

tim
e

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 2

Lazy replication and mobile nodes

• With Lazy group replication, we have to wait for all
nodes to come online to commit

• Lazy master replication cannot work for mobile
nodes and network connection is needed for
transaction to complete

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 3

Example replication scenario: #1

• Replicated DNS servers
– One primary DNS server
– Multiple replicas

• DNS1.UGA.EDU 128.192.1.9
• DNS2.UGA.EDU 128.192.1.193
• DNS3.UGA.EDU 168.24.242.249

– Replicas use zone transfers to get an uptodate database
from the the primary server

– Transfers database every so often
– Inconsistent state between transfers

Lazy, master replication

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 4

Example replication #2

• Palm Pilot Synchronization

• Database (your address book) is in PIM (Outlook
say), Palm Desktop, your Palm device. Updates are
allowed anywhere. You could authorize your
secretary to add items to your Outlook

• Lazy group update

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 5

Example replication #3

• Gnutella – when you add a new song into your
computer, when do the other nodes see it?
Eventually

• Lazy group update

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 6

Example replication #4

• Newsgroups

• Everyone can post to newsgroup. You post in
comp.risks from UGA, and your friend also posts at
the same time from GATECH. My friend at Duke will
see it in some order (UGA first and then GATECH or
the other way around)

• Lazy group replication

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 7

Example replication #5

• Distributed databases with ACID syntax

• Eager group or master

• HARP

• Eager master

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 8

Convergence property

• If no new transactions arrive, if all the nodes are
connected together, they will all converge to the
same replicated state after exchanging replica
updates

• Updates may be lost because of newer updates

• Commutative updates – incremental transformations
that can be applied in any order

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 9

Two-tier replication

• Mobile nodes
– Disconnected most of the time.

– Mobile nodes store Master version and Tentative version

• Master version on disconnected or lazy replica maybe
outdated

• Most recent value due to local updates is maintained as
a tentative value

• Base Nodes
– Always connected. Store a replica of the database. Items

are mastered in base nodes

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 10

Two-tier transaction

• Base transaction
– Work only on master data

– Produce new master data

• Tentative transaction
– Work on local tentative data

– Produce new tentative versions

– Also produce base transaction to be run at a later time on
the base nodes

• Acceptance criteria for each transaction update

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 11

Key properties of two-tier replication schemes

• Mobile nodes may make tentative database updates

• Base transactions execute with single-copy
serializability so the master base system state is the
result of a serializable execution

• A transaction becomes durable when the base
transaction completes

• Replicas at all connected nodes converge to the
base system state

• If all transactions commute, there are no
reconciliations

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 12

Discussion

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 13

Course project
• Project goal:

– Solve a real world problem using technologies that we discuss in
class. Think of a problem that you face in your life. Try to solve it for
the course project

• E.g. I am developing a “study search” system. I want the students
to access it, not only from their desktops, but from their PalmPilots

• Since time is limited, however, I will reward those that aim
high even if they do not completely succeed. The key to a
successful class project is ensuring that some aspects of
your work are completely done; it is hard to grade a project
where nothing quite works.

• The projects will be graded as follows -- by what you
discover in doing the project, how coherently you present
your results, and how well you put your work in perspective
with other research

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 14

Course project

• Keys to a successful project:
– What are you trying to achieve? (e.g. I am developing a

global peer-to-peer file system)
– List the specific project goal (e.g. I am looking at the

scalable communication protocol for this file system)
– How do you measure success? (e.g. I will be successful if

I can scale better than n2 [n is number of nodes])
– Expected obstacles (e.g. I need to run experiments on n

hosts, where n is as large as possible. I need to install…)
– Methods and tools that may be used for the

implementation (e.g. I need a palm pilot and DEV kit)
– Deliverables
– Considerations (e.g. scalability, robustness, security)

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 15

Course project Outline

• Proposals should include:
– a description of your topic,

– a crisp statement of the hypothesis that you will test,

– a statement of why you think the topic is important,

– a description of the methods you will use to evaluate your
ideas, and

– references to at least three papers you have obtained with
a summary of how they relate to your work. Proposals
should not exceed 2 pages in length.

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 16

Outline

• Replication in the Harp File System, Barbara Liskov,
Sanjay Ghemawat, Robert Gruber, Paul Johnson,
Liuba Shrira, Michael Williams, MIT

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 17

Highly Available, Reliable, Persistent (HARP) fs

• Replicated Unix file system accessible via the Virtual
File System (VFS) interface

• VFS is a software abstraction in UNIX like OS. It
provides a unified approach a number of different
file systems

VFS

NTFS UFS EXT2FS HARP

Low level file system

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 18

HARP

• Provides highly available, reliable storage for files

• Guarantees atomic file operations in spite of
concurrency and failure

• Primary copy replication
– Master server authoritative

– Replicas – backup servers

– Updates are sent to “enough” replicas to guarantee fail-
safe behavior

• Log structured updates

Feb 1, 2001 CSCI {4,6}900: Ubiquitous Computing 19

Using logs for throughput

• Disks are partitioned into tracks, sectors and cylinders

• Writing a file might involve writing blocks in different tracks
(slow because of seeks)

• Log structure file systems allow user to write sequentially
onto disk. Logs contain the transformations. Lazy update.

