
Dewarping Book Page Spreads Captured with a 
Mobile Phone Camera 

 

Chelhwon Kim 
Electrical Engineering Department 

University of California, Santa Cruz 
Santa Cruz, CA, US 
chkim@soe.ucsc.edu 

Patrick Chiu, Surendar Chandra 
FX Palo Alto Laboratory 

Palo Alto, CA, US 
chiu@fxpal.com, chandra@fxpal.com

 
 

Abstract—Capturing book images is more convenient with a 
mobile phone camera than with more specialized flat-bed 
scanners or 3D capture devices. We built an application for the 
iPhone 4S that captures a sequence of hi-res (8 MP) images of a 
page spread as the user sweeps the device across the book.  To 
do the 3D dewarping, we implemented two algorithms: optical 
flow (OF) and structure from motion (SfM). Making further 
use of the image sequence, we examined the potential of multi-
frame OCR. Preliminary evaluation on a small set of data 
shows that OF and SfM had comparable OCR performance 
for both single-frame and multi-frame techniques, and that 
multi-frame was substantially better than single-frame.  The 
computation time was much less for OF than for SfM.   

Keywords-document capture, document analysis, dewarping, 
mobile phone camera, book scanning  

I.  INTRODUCTION 
Using portable devices to capture images of documents is 

a fast and convenient way to “scan” documents. Being able 
to use the compact capture device on-site is an important 
benefit in many scenarios. For example, students can use 
them to copy pages from books in a library, without 
potentially damaging the book spines when copying with a 
flat-bed copier. Another example is the digitization of 
documents in storage, in which bounded or loose paper 
records are often in too poor a condition to be used with flat-
bed or V-bed book scanners without damaging them. 

Compared with the results produced by flatbed scanners, 
these photos of documents taken with portable devices suffer 
from various issues including perspective distortion, 
warping, uneven lighting, etc. These defects are visually 
unpleasant and are impediments to OCR (optical character 
recognition). This paper focuses on the problem of 

dewarping page spread images of a book captured by a hi-res 
mobile phone camera. 

We built an app for the iPhone 4S, which has an 
excellent camera, to capture a sequence of frames (8 MP, 2 
fps).  To capture a page spread, the user simply sweeps the 
device across the open book, similar to taking a video (see 
Fig. 1).  From the sequence of frame images, we estimate the 
3D information.  We have implemented both optical flow 
(OF) and structure from motion (SfM) algorithms.  The 
output of this step is a disparity map which encodes the 
depth information. Then we leverage the dewarping module 
in our previous system (where the disparity map was 
obtained from a stereo camera) [7].  This dewarping 
algorithm uses a 3D cylindrical model. An overview of the 
pipeline is illustrated in Fig. 2. 

Making further use of the sequence of frame images, we 
consider a multi-frame OCR approach to improve the OCR 
performance. The idea is based on the observation that the 
left and right pages may be in better focus and not cropped 
off in different frames as the phone camera sweeps across the 
page spread at a non-uniform velocity. 

We performed a preliminary evaluation to compare the 
OF and SfM algorithms in terms of OCR performance and 
computation time.  We also compared multi-frame OCR with 
single-frame OCR using the middle frame image to see 
whether the improvement is substantial.  The results are 
reported in detail below. 

II. RELATED WORK 
Existing research systems have been developed that relies 

on special 3D cameras or mounting hardware.  The Decapod 
system [15] uses two regular cameras with special mounting 
hardware. Our previous system [7] uses a consumer-grade 

 
Fig. 1. Capturing a page spread of a book. 
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compact 3D stereo camera (Fujifilm Finepix W3).  The 
dewarping method in our system is based on a cylindrical 
model, which for non-3D images performed the best (though 
the difference was not statistically significant) in the 
Document Image Dewarping Contest at CBDAR 2007 (see 
[8], [14]). 

Other 3D capture devices include structured light, which 
can sense highly accurate 3D information but requires more 
complicated apparatus. An example system is [4]. 

While it is possible to dewarp a book page image from a 
single photo taken with a non-3D device, the techniques to 
compute the 3D information are more specialized. 
Approaches include detecting content features like curved 
text lines or page boundaries and then applying a 3D 
geometric model to dewarp the image (e.g. [5], [6], [8], [9]). 

Using video to capture documents is perhaps the 
approach that is the most related to our present work.  With 
standard video formats, the frame image resolution is limited 
(VGA at 0.3 MP, HD at 2 MP) and performing OCR is 
problematic.  In contrast, our app captures frames at much 
higher resolution (8 MP). 

An early system, Xerox XRCE CamWorks ([11], [18]), 
has a video camera mounted over a desk to capture text 
segments from flat documents. It applied super-resolution 
techniques and OCR was evaluated on simulated images but 
not on actual camera images. 

The NEC system [10] uses a VGA webcam and a mobile 
PC to capture video of a flat document or a curved book 
page spread. The user sweeps over the document in a back-
and-forth path in order to cover the document and an image 
mosaicing method is applied to reconstruct an image of the 
whole document. The mosaicing uses a structure from 
motion algorithm that tracks Harris corner feature points. 
OCR was not performed nor evaluated. 

Our system also uses a structure from motion algorithm 
that tracks “Good Features To Track” (GFTT) feature points 
[16].  In addition, we implemented a simpler optical flow 
algorithm. The high resolution allows us to use optical flow 
because a single sweep can capture the whole image and 
mosaicing is not need. Mosaicing requires a global 
coordinate system that SfM computes but OF does not.  With 
OF, it suffices that only adjacent pairs of frames share a 
consistent coordinate system. 

III. COMPUTING AND DEWARPING THE 3D STRUCTURE 
We proceed to describe our implementation of two 

methods to compute the 3D structure: optical flow (OF) and 
structure from motion (SfM).  In both, the features that are 
tracked are GFTT feature points [16].  Another option for 
feature points is the popular SIFT points; however SIFT 
points are not specifically designed to be tracked like the 
GFTT points. We also perform camera calibration to model 
the camera’s geometry and correct for the lens distortions, 
which depends on the individual iPhone 4S device. The 
algorithms for GFTT and camera calibration are available in 
the OpenCV [3] computer vision library. The output of these 
OF and SfM methods is a disparity map that encodes the 
depth information, which are then fed into the dewarping 
module in the pipeline (see Fig. 2). 

 

  
Fig. 2. Pipeline of system. 

 
Fig. 3. Identifying corresponding feature points. 

 

 
Fig. 4. Removing outliers using epipolar geometry. 
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A. Optical Flow 
First, for each pair of sequential frame images, the 

corresponding feature points are matched.  An example is 
shown in Fig. 3.  

Next, the outliers are removed using epipolar geometry 
between two frames, which is described in the following 
equation  

, 
where  is the fundamental matrix,  and  are 

homogeneous coordinates of the projected points of 3D point 
X onto the first and second image plane respectively. From 
this equation, we can map  to a line  in the second 
image. In other words, the projected point  on the second 
image plane always lies on the line. However, we cannot 
guarantee that all pairs of corresponding feature points 
satisfy this epipolar constraint due to noise in the image 
measurements and error in the optical flow matching 
method. 

Therefore, to identify outliers among them, we calculate 
the orthogonal distance from the matching point in the 
second image,  to  (see Fig. 4), and if the distance is 
beyond a certain threshold then the pair of corresponding 
points is considered as an outlier. Fig. 4 shows the remaining 
inliers. 

Computing disparities from optical flow is accomplished 
by looking at the displacements of the tracked feature points.  
The points on the book page spread at different depths will 
have different displacements (Fig. 5), and these disparities 
can be used to recover the shape of the page spread (see Fig. 
6). Each dot in Fig. 6 represents a pair of corresponding 
points in the 3D space, where (x, y) are the image 
coordinates of the feature point in the first image, and z is the 
displacement of the tracked feature point in the second image 
with respect to the corresponding feature point in the first 
image.  The recovered 3D points are clustered into two 
groups on each page; currently this is done manually by 
labeling the location of the book spine. This process can be 
automated by applying a clustering algorithm. A surface 
model is fitted to each cluster of 3D points using a 4-th order 
polynomial equation. See Fig. 7.  

From this surface model, a disparity map is generated by 
mapping the depth (z-coordinate) to a grayscale value.  
Finally, the document region is localized within the image 
using an image segmentation algorithm; a good algorithm is 
GrabCut [13], which is available in OpenCV.  In order to 
apply GrabCut, some background pixels must be identified 
and one way to do this is to sample pixels around the edge of 
the image and eliminate those that are similar to the center 
area of the image. An example of the resulting disparity map 
is shown in Fig. 8. 

B. Structure from Motion 
The first step is to initialize the 3D structure and camera 

motion from two sequential frames as follows: we first set 
the first camera matrix P1=K[I3x3|03x1] to be aligned with the 
world coordinate frame, where K is the camera calibration 
matrix. Next, we identify the corresponding points between 
those two frames and estimate the fundamental matrix F 
using RANSAC algorithm. This is available in OpenCV 
library. The fundamental matrix is used to remove outliers as 
described above. Then, the essential matrix is computed by 
E=KTFK. Once we have determined the essential matrix, we 
can recover the camera pose (rotation R and translation t) for 
the second frame with respect to the first camera frame [17]. 
Then P2, the camera matrix for the second frame, can be 
easily obtained by multiplying the camera calibration matrix 
K by the camera pose for the second frame [R|t]. Lastly, we 

 
Fig. 5. Optical flow disparities  

(upper-left corner shows a closeup). 

 
Fig. 6. Recovering shape information.  

 
Fig. 7. Surface fitting. 

 
Fig. 8. Disparity map with document region localized. 
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estimate the 3D point structure from the 2D corresponding 
points and P2 through triangulation [17].  

In practice, the algorithm for the fundamental matrix 
might not produce a well-conditioned initial 3D structure due 
to noise in the image measurements. Therefore, we add a 
step to reject ill-conditioned structures. An example of an ill-
conditioned initial 3D structure is shown in Fig. 9a. The 

criterion of rejection is based on the prior knowledge that the 
shape of a book spread page is almost always two slightly 
curved surfaces that are not too far from a plane. Therefore, 
we first detect a dominant plane using RANSAC from the 
generated 3D structure, and then calculate the orthogonal 
distance for each 3D point to the plane. If the average 
distance is less than a predefined threshold then we accept 
the pair of frames, or reject it and check the next pair of 
frames. The threshold can be fixed under an assumption that 
the distance between the camera and the target is almost 
consistent across different users. Fig. 9b shows a well-
conditioned 3D structure from the selected pair of frames.  

An alternative method for computing the fundamental 
matrix is to use a non-linear optimization technique (e.g. 
[1]).  This might improve the accuracy of the camera pose, 
but it requires more complicated processing. 

Now we have an initial 3D point structure and consider 
how to use a new frame to update it. Let us assume that the 
3D point structure for (i-1)-th frame is already known and we 
have tracked the existing corresponding points from the (i-
1)-th frame to the i-th frame. As we described above, we 
remove outliers from the tracked points using epipolar 
geometry. The remaining tracked points and the 
corresponding 3D points are used to estimate the new camera 
pose for i-th image Pi by minimizing the projection error 

, where  is the j-th tracked 2D point 
in the i-th image and Xj is the corresponding j-th 3D point. 
Given this estimated camera matrix Pi and the tracked points 
in the i-th frame, we recalculate the 3D point structure 
through triangulation. We iterate the above process 
throughout the sequence of frames. Fig. 10a shows the 3D 
point structures for each iteration and camera pose frames 
with different colors. To get a single 3D structure from all 
the frames’ 3D structures, we combined them by simple 
averaging (Fig. 10b). The final 3D structure still has outliers 
as can be seen from the right most corner of the structure in 
Fig. 10b. In order to deal with this, we perform the surface 
fitting algorithm with RANSAC. 

From the surface model, a disparity map is generated for 
each frame as described above in the optical flow method. 

Another option for combining all the 3D structures is to 
use bundle adjustment (e.g. [20]). The advantage is that it 
might improve the accuracy of the camera poses and the 3D 
structures.  Since in our application, the camera motion is 
very simple (basically linear), the improvement may be 
small.  The disadvantage of using bundle adjustment is that it 
requires more processing. 

C. Cylindrical Model 
For completeness, we give a brief summary of how the 

cylindrical model is used with the disparity map to do the 
dewarping; for more details refer to [7]. First, from a 
disparity map, two depth profiles perpendicular to the spine 
are extracted from the top and bottom halves of the page 
spread by averaging over their respective halves. These 
profiles form the skeleton of the cylindrical model. To 
facilitate the rendering of the dewarped image, rectangular 
meshes are employed. A mesh vertex point on the cylindrical 

 
(a) ill-conditioned structure 

 
(b) well-conditioned structure 

Fig. 9. Initial 3D structure. 

 
(a) 3D structures for 5 frames 

 
(b) combined 3D structure 

Fig. 10. Structure from motion: after 5 frames. 
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model can be mapped to a vertex point in the dewarped 
image by flattening it using its arclength along the 
cylindrical surface to push it down and outward from the 
spine. Points inside each mesh rectangle are then interpolated 
based on the rectangle’s vertices. 

IV. MULTI-FRAME OCR 
By single-frame OCR, we mean using one frame to OCR 

the left and right pages of a page spread.  Typically, the 
middle frame in the sequence of frame images can be used, 
because both pages of the book spread are usually in view 
with the camera held in landscape orientation.   

By multi-frame OCR, we mean using more than one 
frame for doing the OCR.  The idea is that the left page is 
more likely to be better captured in the early frames and the 
right page in the later frames.  Some frames may also be in 
better focus than others.  

To study the potential of multi-frame OCR, we compared 
the best OCR scores for the left and right pages over multiple 
frames to the OCR scores of the middle frame.  These results 
are reported below.   

For single-frame OCR and multi-frame OCR, a separate 
condition is whether the frame images have been dewarped. 

V. PRELIMINARY EVALUATION 
To compare OF vs. SfM, non-dewarped vs. dewarped, 

and single-frame vs. multi-frame, we did a preliminary 
evaluation on a small set of data based on OCR.   

Six images of book page spreads were taken with our app 
on an iPhone 4S camera. The device was handheld (a tripod 
was not used). The frame image resolution was 8 MP (3264 
x 2448). The frame rate used was about 1 fps; we found this 

to work fine for our processing pipeline even though the 
frame rate can go as high as 2 fps when capturing 8 MP 
images.  

Our mobile phone app was implemented in Objective-C, 
and the code for processing the frame images was 
implemented in C++ and uses the OpenCV library [3]. The 
captured images were processed on a desktop PC. 

We examined the boundary text lines on the two pages in 
each page spread: {top-left, top-right, bottom-left, bottom-
right}.  By a “boundary text line”, we mean the text line 
nearest to the top or bottom of a page that spans more than 
half the body of the page, so that short lines at the bottom of 
a paragraph and headers or footers are not considered.  The 6 
page spreads provides a total of 24 boundary text-lines. 

An example of a dewarped page spread is shown in Fig. 
11. The frame is the middle frame of the image sequence. 
The method is OF. The bottom image in the figure is a 
closeup of the top-right region of the page spread showing 
several text lines that have been dewarped.  There is some 
inaccuracy near the spine of the book, which is a difficult 
area to handle due to the steepness of the page and the lack 
of content for tracking. 

For OCR, we use the open-source Tesseract OCR engine 
[19].  To measure the difference between two text strings, we 
use edit distance (Levenshtein distance), normalized by 
dividing by the length of the ground-truth string. 

The left and right pages were manually cropped from the 
images, and each page was processed through the OCR 
engine. Then the top and bottom boundary text line 
characters were extracted and the edit distances were 
computed. 

For the single-frame condition, we used the middle frame 
in the image sequence.  For the multi-frame condition, we 
used the frames at the beginning, middle, and end of the 
image sequence.  

The OCR results show that dewarped was better than 
non-dewarped, with substantial improvement for multi-frame 
over single-frame. See Fig. 12. OF and SfM had similar 
performance for both single-frame and multi-frame.  In terms 
of processing time for computing the 3D structure, OF was 
much faster than SfM (more than 2x). 

VI. CONCLUSION AND FUTURE WORK 
We presented an application to capture page spread 

images with a mobile phone, and a processing pipeline that 
uses either OF or SfM to compute the 3D information along 
with a cylindrical model to perform dewarping. Our 
preliminary evaluation indicates that OF might be a better 
choice than SfM since they had similar OCR performance 
but OF was much faster.  This could be important in future 
systems when the frame images are processed on the mobile 
phone. 

Another aspect that could be improved in the future is to 
mitigate the motion blur caused by the sweeping motion of 
the camera when the user takes the sequence of images.  This 
is somewhat noticeable in the images in Fig. 11. One way to 
address the blur problem is to apply deconvolution 
algorithms, which is an active area of research (e.g. [21]). 
Improvements in mobile phone cameras such as faster lens 

 

 
(a) before dewarping 

 
(b) after dewarping 

Fig. 11. Example of a dewarped page spread with the top-right region 
shown. 
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and more reliable autofocus systems will also lessen the 
blurriness. 

Other future work includes automating some of the steps 
in the pipeline. For example, page frame detection 
algorithms (e.g. [2]) can be applied to crop the left and right 
pages from the page spread.  Image quality assessment 
algorithms (e.g. [12]) can be applied to select the frames that 
are likely to produce the best OCR results. 
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Fig. 12. OCR and processing time results. 
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