Mosaicing Videos to Stream Over Multiple Independent Channels

<u>Chris Boehnen</u>, Allison Regier, Deborah Thomas, Surendar Chandra and Patrick Flynn University of Notre Dame

- Practical MDC to create independent sub-streams
- Illustrate scalable quality and compression overhead

# Motivation - MDC

 Multiple Description Coding (MDC): Split stream into independent substreams

No sub-stream is critical

Final quality depends on the number of sub-streams available

Compare with Layered encoding
 Enhancement layers require base layer
 E.g., P and B frames require I frame



## **Motivation - Applications**

#### Some users fail to receive some streams



## **Motivation - Applications**



## Our approach



## Approach: Stream splitting

- Spatial
  - Neighboring pixels sent to different substreams
  - Reconstructed using pixel averaging
  - Retain some temporal redundancy for H.264





# Approach: Stream splitting

Temporal

Neighboring frames sent to different substreams

Retain some spatial redundancy for H.264





# Approach: Stream splitting

Quadrant based
Split frame into equal quadrants
Retain some spatial and temporal redundancy
Sub-streams may not be equal size



## **Transmission Error Resiliency**



## **Evaluation Dataset**

- NDSet
  - Plain background, little movement
  - CVRL data acquisition
- MotorcycleSet
   Heavy motion
   www.motorcycle.co m/mo/mcvideos/ videos.html

QuickTime™ and a decompressor are needed to see this picture.

#### Experiments

- Resiliency to stream loss
   PSNR Original vs Recombined stream
   With and without data loss
   Prefer: graceful degradation
- Sub-stream characteristics
   Encoding parameters for each sub-stream
   Discussed in paper
- Peak stream requirement
   Prefer: uniform rather than spiky

   E.g., Tavarua used multiple cellular links



## Results - Data Loss

- Worst case data loss: initial 1500 bytes of I-frames zero'd
- Traditional Method: 1500 bytes per I-frame
- Sub-stream methods

experimented with 1, 2, 3 and all streams
 1500 byte per stream or four times data loss



## Results: ND – Zero'd all I-frames



#### Results: Motorcycle - Zero'd all I-frames



### Results: ND - frame size



#### Results: Motorcycle - frame size



## Conclusions

- MDC functionality using SD encoders
   Sub-stream independently encoded
   MDC higher overhead versus SD coding
- Temporal: Bursty transmission
   I frame ~ original
- Spatial: fault tolerant
   Inigh overhead (lost spatial redundancy)
- Quadrant: low compression overhead
  - fault tolerant: iff lost quandrant was unimportant

## Future Work

- Adaptive sub-stream compression parameters
- Generate sub-streams in compression domain
- Versatile sub-stream creation (not just four)



#### Results: ND- half I-frame



#### Results: Motorcycle- half I-frame

