Outline for today

- Liu, X., Corner, M., and Shenoy, P. SEVA: sensor-enhanced video annotation (best paper award @ACM MM)
System setup

- Use video sensors to track suspects
- Steps:
 - Detect objects: know that an object is there
 - Recognize objects: See if it interesting
 - Track objects: Track its motion
- Approach 1: Single tier
 - One sensor that can perform all the tasks
- Approach 2: Multi-tier
 - Three tiers in this paper where each tier has increasing amounts of resources. Judiciously mix these tiers to achieve overall benefits
- Constraints:
 - Cost (reliability and coverage) and energy consumption
Applications

- Environment monitoring to track exotic animals
- Search and rescue missions
- Baby monitor (for toddlers)

Design principles:
- Map each task to the least powerful tier with sufficient resources (and conserve energy)
- Exploit wakeup-on-demand higher tiers: (to conserve energy)
- Exploit redundancy in coverage: If two camera can see the same object, then use this fact to localize the object in order to wake up the smallest set of higher tier nodes
Tier 1

- Lowest capability: Can perform object detection by using differencing between two frames (reference?)
 - CMUcam + mote: 136 ms (132 for camera), 13.4 J for mote and 153.8 J for camera
 - Cyclops + mote: 892 ms, 29.5 J

- Integrated platforms could be even more energy efficient
Tier 2

- Stargate

<table>
<thead>
<tr>
<th>Mode</th>
<th>Latency (ms)</th>
<th>Current (mA)</th>
<th>Power (mW)</th>
<th>Energy Usage (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Wakeup</td>
<td>366</td>
<td>201.6</td>
<td>1008</td>
<td>368.9</td>
</tr>
<tr>
<td>B: Wakeup Stabilization</td>
<td>924</td>
<td>251.2</td>
<td>1266.5</td>
<td>1161</td>
</tr>
<tr>
<td>C: Camera Initialization</td>
<td>1280</td>
<td>269.6</td>
<td>1348</td>
<td>1725.4</td>
</tr>
<tr>
<td>D: Frame Grabber</td>
<td>325</td>
<td>330.6</td>
<td>1653</td>
<td>537.2</td>
</tr>
<tr>
<td>E: Object Recognition</td>
<td>105</td>
<td>274.7</td>
<td>1373.5</td>
<td>144.2</td>
</tr>
<tr>
<td>F: Shutdown</td>
<td>1000</td>
<td>153.7</td>
<td>768.5</td>
<td>768.5</td>
</tr>
<tr>
<td>G: Suspend</td>
<td>–</td>
<td>3</td>
<td>15</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 5: SensEye Tier 2 Latency and Energy usage breakup. The total latency is 4 seconds and total energy usage is 4.71 J.
† This is measured on an optimized Stargate node with no peripherals attached.
Comparison

- Multi-tier architecture is far more energy efficient with almost similar recognition ratios

<table>
<thead>
<tr>
<th>Component</th>
<th>Total Wakeups</th>
<th>On Wakeup Object Found</th>
<th>Energy Usage (Joules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stargate 1</td>
<td>311</td>
<td>32</td>
<td>1464.8</td>
</tr>
<tr>
<td>Stargate 2</td>
<td>310</td>
<td>42</td>
<td>1460.1</td>
</tr>
</tbody>
</table>

Table 6: Number of wakeups and energy usage of a Single-tier system. Total energy usage of both Stargates when awake is 2924.9 J. Total missed detections are 5.

<table>
<thead>
<tr>
<th>Component</th>
<th>Total Wakeups</th>
<th>On Wakeup Object Found</th>
<th>Energy Usage (Joules)</th>
<th>Cyclops Expected Energy(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mote 1</td>
<td>304</td>
<td>15</td>
<td>50.7</td>
<td>8.96</td>
</tr>
<tr>
<td>Mote 2</td>
<td>304</td>
<td>23</td>
<td>50.7</td>
<td>8.96</td>
</tr>
<tr>
<td>Mote 3</td>
<td>304</td>
<td>27</td>
<td>50.7</td>
<td>8.96</td>
</tr>
<tr>
<td>Mote 4</td>
<td>304</td>
<td>10</td>
<td>50.7</td>
<td>8.96</td>
</tr>
<tr>
<td>Stargate 1</td>
<td>27</td>
<td>23</td>
<td>127.17</td>
<td>127.17</td>
</tr>
<tr>
<td>Stargate 2</td>
<td>29</td>
<td>25</td>
<td>136.59</td>
<td>136.59</td>
</tr>
</tbody>
</table>

Table 7: Number of wakeups and energy usage of each SensEye component. Total energy usage when components are awake with CMUcam is 466.8 J and with Cyclops is 299.6 J. Total missed detections are 8.
The claim is not that they invented new recognition algorithms

- On the other hand, we need recognition algorithms which may not be as accurate as the state of the art but can fit into small devices and run for long durations
SEVA: Sensor-Enhanced Video Annotation

Xiaotao Liu,
Mark Corner, Prashant Shenoy

University of Massachusetts, Amherst
Pervasive Sensing and Location

We are in the midst of a very exciting time

Rapid advances in embedded sensor technology

- wireless, processing, storage
- battery-powered but long lasting
- small-sized and inexpensive

Similar trend in location systems

- outdoor: GPS (<10m accuracy)
- indoor: ultrasound (cm accuracy)

Improvements in accuracy, deployment, and cost

Hurtling towards pervasive sensing and location-based systems
Rapid Accumulation of Content

Video/Still cameras are cheap, mass storage is almost free
Images coming from huge number and variety of devices
Mobile phones, DV Cameras, Webcams, surveillance CCTV
½ billion camera phones purchased this year
Leading to a massive accumulation of media
huge personal collections of content
collaborative databases are even larger
A proliferation of sharing and organizing services
Photos: Flickr, SmugMug, Shutterfly, Videos: Sharegear
estimate is 51 Billion photos shared in 2003, 213 Billion by 2008
Content Organization and Retrieval

Organization and retrieval is the key to making multimedia useful.

- depends on knowing what/where/when/who of my videos and pictures.

Google, Flickr, .. all depend on manual or inferred text annotations.

- annotations may be incomplete or inexact.
- leads to poor precision and/or recall.

Content-based retrieval and image recognition aren’t 100% accurate.

Google image search: “Xiaotao Liu”
Sensor Enhanced Video Annotation

Our solution: Sensor Enhanced Video Annotation (SEVA)
objects should be self identifying and videos self-annotating
records the identity and locations of objects along with video
does this frame-by-frame or for every photo

Video camera produces media stream
Camera queries nearby objects for **identity and location**
produces a parallel sensor stream

![Diagram of Sensor Enhanced Video Annotation (SEVA)]
Key Challenges

Mismatch in camera coverage and sensor range
 objects within radio range may not be visible

Objects, camera, or both may be highly mobile
 objects will move in and out of the field of view

Limitations of constrained sensors
 sensors can’t respond to every frame
 need slow query rate to scale system

Limitations of location system
 location systems don’t update at same rate as video
SEVA operates in a series of stages:

- correlate data from sensor stream with video stream
- extrapolate and predict the locations of objects when missing
- filter out any unviewable objects from the annotations
Stream Correlation

SEVA must correlate sensor responses with frames

- sensors may respond desynchronized with current frame
due to processing delays, power management, link-layer

Two modes of operation:

- synchronized clocks, but often not feasible in sensor
approximate based on MAC layer delays and processing
we currently use the later

Produces a time-synched stream of video and locations
Extrapolation and Prediction

Not every frame contains a location for every object. We want to maintain object information for every frame. Objects may have entered/LEFT view between responses. Similarly, the camera may have moved, or both.
Extrapolation and Prediction

Apply a least squares regression technique to find object path
Search kth degree polynomials, of increasing degree, for each axis

$$X(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a_k t^k$$

Can extrapolate or predict location for every frame
Filtering and Elimination

Need to determine which objects are visible in each frame
Use object locations with optics model
combination of the focal length and sensor size
does not take obstructions into account: bug or feature?
What about partially viewable objects?
visibility is in the eye of the beholder
Prototype Implementation

To provide a test platform we constructed a prototype

Based on a Sony Vaio laptop

contains a 320x240, 12fps, CMOS based camera

Two location systems

outdoors: GPS w/land-based correction (accuracy: 5-15m)
indoors: Cricket ultrasonic location system (accuracy: 3cm)

Augmented with digital compass for orientation

Pervasive Identification System

outdoors: 802.11 ad-hoc mode
indoors: sensor wireless interface
Prototype Implementation (cont.)

Laptop with: Digital Compass, Cricket Ultrasound, Camera, GPS, WiFi
Evaluation

In evaluating SEVA we sought to answer several key questions:

How accurate is SEVA is tagging frames?

 static experiments
 moving objects/camera: stresses extrapolation system
 report results from Ultrasound location system (GPS in paper)

How well does SEVA scale?

What is SEVA’s computational overhead?
Static Objects

Place object (film canister) along trajectories through the viewable area
Take 100 frames at each location, and manually verify accuracy
error rate is the sum of false positives and negatives

Camera Position
(x=223 cm, y=0 cm, z=57 cm)*

Trajectory 1
(y=200 cm, z=3 cm)*

Trajectory 3
(x=200 cm, z=3 cm)*

Trajectory 2
(y=300 cm, z=3 cm)*

* Corrected from paper
Errors only occur near the viewable boundary due to inaccuracies in location and filtering.

The fact that the object is very small represents a worst case. Any object wider than 20cm will have zero error rate.
Dynamic Objects

Attach object to a pulley and “zip wire”, crosses view at different speeds

Measures the effectiveness of our extrapolation method

We compare system with and without extrapolation

 vary the response frequency: measure of scalability and robustness

error rate is reported as the number of frames mislabeled

report error rates for entering and leaving field of view
Dynamic Objects (avg=1.5 m/s)

System with extrapolation mislabels less than one frame
Non-extrapolated system mislabels up to seven frames
SEVA corrects for missing responses
or scales well to larger number of objects
Random Dynamic Experiment

“Zip Wire” is a linear path

provides repeatability, but straightforward extrapolation

Instead try experiments with “random” movement

stresses higher-order regression

We drove a remote control car in and out of the camera’s view

On average, SEVA only misidentifies 2 frames at boundaries
Scalability and Computation

System currently scales well to 10 moving objects

limited by the available bandwidth of sensors

Computational load measured on laptop

ultrasound location: 150 μs/object

correlation and extrapolation: 100 μs/object

filtering: 100 μs/object

SEVA will work in realtime on more modest hardware
Other results

GPS accuracy is still too poor to use with SEVA
results in paper
SEVA mislabels when object is 10s of meters from viewable
major improvements in GPS expected
SEVA also works with a moving camera
used several repeatable movement patterns
makes few errors (< 2 frames on average)
performs worst when rotating camera quickly
Related Work

Sensor-based annotation of video:
in contrast, SEVA records what and where the object was
system for augmenting video studio with light sensors: Su 2004

Sensor Systems and Location
Hill 2002: Mote sensor platform
Priyantha, Chakraborty, and Balakrishnan 2000: Cricket
Conclusions

Multimedia systems must utilize new sensor/location systems

SEVA provides a system for automatically annotating video
records what, where, and when for visible objects
enables later retrieval, or online streaming applications

A large set of experiments demonstrates that SEVA:
can identify visibility of static objects with a few centimeters
can extrapolate positions even with slow beacon rates