# Chapter 11.3 MPEG-2

- MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps
- Defined seven profiles aimed at different applications:
  - Simple, Main, SNR scalable, Spatially scalable, High, 4:2:2, Multiview
  - Within each profile, up to four levels are defined
  - The DVD video specification allows only four display resolutions: 720×480, 704×480, 352×480, and 352×240
    - a restricted form of the MPEG-2 Main profile at the Main and Low levels
    - Video peak 9.8 Mbit/s
    - Total peak 10.08 Mbit/s
    - Minimum 300 kbit/s

| Level                            |                                  | Simple<br>profile                                        | Main<br>profile    | SNR<br>Scalable<br>profile |                                                                                             | Spatially<br>Scalable<br>profile |                     | High<br>Profile                | 4:2:2<br>Profile                                                      | Multiview<br>Profile |
|----------------------------------|----------------------------------|----------------------------------------------------------|--------------------|----------------------------|---------------------------------------------------------------------------------------------|----------------------------------|---------------------|--------------------------------|-----------------------------------------------------------------------|----------------------|
| High<br>High 1440<br>Main<br>Low |                                  | *                                                        | *<br>*<br>*        | اد<br>اد                   | *                                                                                           | *                                |                     | *<br>*<br>*                    | *                                                                     | *                    |
|                                  | Level                            | Ma<br>Reso                                               | Max.<br>Resolution |                            | N<br>pixe                                                                                   | Max M<br>els/sec D               |                     | ax coded<br>ata Rate<br>(Mbps) | Application                                                           |                      |
|                                  | High<br>High 1440<br>Main<br>Low | 1,920 × 1,152<br>1,440 × 1,152<br>720 × 576<br>352 × 288 |                    | 60<br>60<br>30<br>30       | $62.7 \times 10^{6}$<br>$47.0 \times 10^{6}$<br>$10.4 \times 10^{6}$<br>$3.0 \times 10^{6}$ |                                  | 80<br>60<br>15<br>4 |                                | film production<br>consumer HDTV<br>studio TV<br>consumer tape equiv. |                      |
|                                  |                                  | 2/9/09                                                   |                    |                            | CS                                                                                          | SE 40373/60373                   | 3: Multim           | edia Systems                   |                                                                       | page 2               |

# Supporting Interlaced Video

- MPEG-2 must support interlaced video as well since this is one of the options for digital broadcast TV and HDTV
- In interlaced video each frame consists of two fields, referred to as the *top-field* and the *bottom-field* 
  - In a Frame-picture, all scanlines from both fields are interleaved to form a single frame, then divided into 16×16 macroblocks and coded using MC
  - If each field is treated as a separate picture, then it is called *Field-picture*
  - MPEG 2 defines Frame Prediction and Field Prediction as well as five prediction modes





## MPEG-2 layered coding

- The MPEG-2 scalable coding: A base layer and one or more enhancement layers can be defined
  - The base layer can be independently encoded, transmitted and decoded to obtain basic video quality
  - The encoding and decoding of the enhancement layer is dependent on the base layer or the previous enhancement layer
- Scalable coding is especially useful for MPEG-2 video transmitted over networks with following characteristics:
  - Networks with very different bit-rates
  - Networks with variable bit rate (VBR) channels
  - Networks with noisy connections

## **MPEG-2** Scalabilities

#### MPEG-2 supports the following scalabilities:

- 1. SNR Scalability—enhancement layer provides higher SNR
- 2. Spatial Scalability enhancement layer provides higher spatial resolution
- 3. Temporal Scalability—enhancement layer facilitates higher frame rate
- 4. Hybrid Scalability combination of any two of the above three scalabilities
- 5. Data Partitioning quantized DCT coefficients are split into partitions

# Major Differences from MPEG-1

- Better resilience to bit-errors: In addition to Program Stream, a Transport Stream is added to MPEG-2 bit streams
- Support of 4:2:2 and 4:4:4 chroma subsampling
- More restricted slice structure: MPEG-2 slices must start and end in the same macro block row. In other words, the left edge of a picture always starts a new slice and the longest slice in MPEG-2 can have only one row of macro blocks
- More flexible video formats: It supports various picture resolutions as defined by DVD, ATV and HDTV

# Other Major Differences from MPEG-1 (Cont'd)

#### Nonlinear quantization — two types of scales:

- 1. For the first type, scale is the same as in MPEG-1 in which it is an integer in the range of [1, 31] and  $scale_i = i$
- 2. For the second type, a nonlinear relationship exists, i.e.,  $scale_i \neq i$ . The *i*th scale value can be looked up from Table

| i         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15  | 16 |
|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|----|
| $scale_i$ | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 10 | 12 | 14 | 16 | 18 | 20  | 22  | 24 |
| i         | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30  | 31  |    |
| $scale_i$ | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 |    |



# Chapter 12: MPEG – 4 and beyond

#### 12.5: H.264 = MPEG-4 Part 10, or MPEG-4 AVC

H.264 offers up to 30-50% better compression than MPEG-2, and up to 30% over H.263+ and MPEG-4 advanced simple profile

#### Core Features

- VLC-Based Entropy Decoding: Two entropy methods are used in the variable-length entropy decoder: Unified-VLC (UVLC) and Context Adaptive VLC (CAVLC)
- Motion Compensation (P-Prediction): Uses a treestructured motion segmentation down to 4×4 block size (16×16, 16×8, 8×16, 8×8, 8×4, 4×8, 4×4). This allows much more accurate motion compensation of moving objects. Furthermore, motion vectors can be up to halfpixel or quarter-pixel accuracy
- Intra-Prediction (I-Prediction): H.264 exploits much more spatial prediction than in H.263+

- P and I prediction schemes are accurate. Hence, little spatial correlation let. H.264 therefore uses a simple integer-precision 4 × 4 DCT, and a quantization scheme with nonlinear step-sizes
- In-Loop Deblocking Filters

### **Baseline Profile Features**

- The Baseline profile of H.264 is intended for realtime conversational applications, such as videoconferencing
  - Arbitrary slice order (ASO): decoding order need not be monotonically increasing – allowing for decoding out of order packets
  - Flexible macroblock order (FMO) can be decoded in any order – lost macroblocks scattered throughout the picture
  - Redundant slices to improve resilience

## Main Profile Features

- Represents non-low-delay applications such as broadcasting and stored-medium
  - B slices: B frames can be used as reference frames. They can be in any temporal direction (forward-forward, forward-backward, backward-backward)
  - More flexible 16 reference frames (or 32 reference fields)
  - Context Adaptive Binary Arithmetic Coding (CABAC)
  - Weighted Prediction

#### Not all decoders support all the features

http://en.wikipedia.org/wiki/H.264/MPEG-4\_AVC

# MPEG-4

#### MPEG-4 adopts a object-based coding:

- Offering higher compression ratio, also beneficial for digital video composition, manipulation, indexing, and retrieval
- The bit-rate for MPEG-4 video now covers a large range between 5 kbps to 10 Mbps
- More interactive than MPEG-1 and MPEG-2



# Composition and manipulation of object



page 15

# **Overview of MPEG-4**

- Video-object Sequence (VS)—delivers the complete MPEG-4 visual scene, which may contain 2-D or 3-D natural or synthetic objects
- Video Object (VO) a object in the scene, which can be of arbitrary shape corresponding to an object or background of the scene
- 3. Video Object Layer (VOL) facilitates a way to support (multi-layered) scalable coding. A VO can have multiple VOLs under scalable coding, or have a single VOL under non-scalable coding
- Group of Video Object Planes (GOV) groups
  Video Object Planes together (optional level)
- Video Object Plane (VOP) a snapshot of a VO at a particular moment

# Comparison between Block-based Coding and Object-based Coding



CSE 40373/60373: Multimedia Systems

## **Object oriented**

- ▶ VOP I-VOP, B-VOP, P-VOP
- Objects can be arbitrary shape need to encode the shape and the texture (object)
  - Need to treat MB inside object different than boundary blocks (padding, different DCT etc)



# Sprite Coding

- A sprite is a graphic image that can freely move around within a larger graphic image or a set of images
- To separate the foreground object from the background, we introduce the notion of a sprite panorama: a still image that describes the static background over a sequence of video frames
  - The large sprite panoramic image can be encoded and sent to the decoder only once at the beginning of the video sequence
  - When the decoder receives separately coded foreground objects and parameters describing the camera movements thus far, it can reconstruct the scene in an efficient manner



# Global Motion Compensation (GMC)

- "Global" overall change due to camera motions (pan, tilt, rotation and zoom)
  - Without GMC this will cause a large number of significant motion vectors
- There are four major components within the GMC algorithm:
  - Global motion estimation
  - Warping and blending
  - Motion trajectory coding
  - Choice of LMC (Local Motion Compensation) or GMC.

|  |         |       | Typical                 | Bit-rate   | Max number |  |  |
|--|---------|-------|-------------------------|------------|------------|--|--|
|  | Profile | Level | picture size            | (bits/sec) | of objects |  |  |
|  |         | 1     | 176 	imes 144 (QCIF)    | 64 k       | 4          |  |  |
|  | Simple  | 2     | $352 \times 288$ (CIF)  | 128 k      | 4          |  |  |
|  |         | 3     | $352 \times 288$ (CIF)  | 384 k      | 4          |  |  |
|  | Core    | 1     | 176 	imes 144 (QCIF)    | 384 k      | 4          |  |  |
|  |         | 2     | $352 \times 288$ (CIF)  | 2 M        | 16         |  |  |
|  |         | 1     | $352 \times 288$ (CIF)  | 2 M        | 16         |  |  |
|  | Main    | 2     | 720 	imes 576 (CCIR601) | 15 M       | 32         |  |  |
|  |         | 3     | 1920 	imes 1080 (HDTV)  | 38.4 M     | 32         |  |  |

/9/09

CSE 40373/60373: Multimedia Systems