Using "animation" to motivate motion

In computer generated animation, we take an object and mathematically render where it will be in the different frames

Courtesy: Wikipedia

10.3 Search for Motion Vectors

- Macroblock based (rather than pixel based or object based (MPEG-4). The goal is to find vector that maps block between reference and target frame
- The difference between two macroblocks measured by their Mean Absolute Difference (MAD):

$$MAD(i, j) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \left| C(x+k, y+l) - R(x+i+k, y+j+l) \right|$$

N — size of the macroblock,

k and l — indices for pixels in the macroblock,

i and *j* — horizontal and vertical displacements,

C(x + k, y + l) — pixels in macroblock in Target frame,

R(x+i+k, y+j+l) — pixels in macroblock in Reference frame.

The goal of the search is to find a vector (i, j) as the motion vector $\mathbf{MV} = (\mathbf{u}, \mathbf{v})$, such that MAD(i, j) is minimum:

 $(u,v) = \left[(i,j) | MAD(i,j) \text{ is minimum, } i \in [-p,p], j \in [-p,p] \right]$

Sequential Search

- Sequential search: sequentially search the whole $(2p + 1) \times (2p + 1) \times (2$
 - + 1) window in the Reference frame (referred to as Full search)
 - a macroblock centered at each of the positions within the window is compared to the macroblock in the Target frame pixel by pixel and their respective MAD
 - The vector (i, j) that offers the least MAD is designated as the MV (u, v) for the macroblock in the Target frame
 - sequential search method is very costly assuming each pixel comparison requires three operations (subtraction, absolute value, addition), the cost for obtaining a motion vector for a single macroblock is O (p²N²)

2D Logarithmic Search

- Logarithmic search: a cheaper version, that is suboptimal but still usually effective
- The procedure for 2D Logarithmic Search of motion vectors takes several iterations and is akin to a binary search:
 - initially only nine locations in the search window are used as seeds for a MAD-based search; they are marked as '1'
 - After the one that yields the minimum MAD is located, the center of the new search region is moved to it and the step-size ("offset") is reduced to half
 - In the next iteration, the nine new locations are marked as '2' and so on

Hierarchical Search

- The search can benefit from a hierarchical (multiresolution) approach in which initial estimation of the motion vector can be obtained from images with a significantly reduced resolution.
- a three-level hierarchical search in which the original image is at Level 0, images at Levels 1 and 2 are obtained by down-sampling from the previous levels by a factor of 2, and the initial search is conducted at Level 2
- Since the size of the macroblock is smaller and p can also be proportionally reduced, the number of operations required is greatly reduced

	Cost of Motion Vector Search				
Search Method		OPS_per_second for 720 $ imes$ 480 at 30 fps			
		p = 15	p = 7		
Sequential search		$29.89 imes10^9$	$7.00 imes10^9$		
2D Logarithmic search		$1.25 imes10^9$	$0.78 imes10^9$		
3-level H	lierarchical search	$0.51 imes10^9$	$0.40 imes10^9$		

http://dvd-hq.info/

2/3/09

Macro blocks

2/3/09

0

1

Focusing on blocks A B C & D

2/3/09

.

Best match in reference frame

2/3/09

Detail

0

#

Motion vector

2/3/09

10.4 H.261 digital video compression

- designed for videophone, video conferencing and other audiovisual services over ISDN (pre-DSL telephony/broadband service)
 - The video codec supports bit-rates of p x 64 kbps, where p ranges from 1 to 30 (Hence also known as p * 64)
 - Require that the delay of the video encoder be less than 150 msec so that the video can be used for real-time bidirectional video conferencing

Video	Luminance	Chrominance	Bit-rate (Mbps)	H.261
format	image	image	(if 30 fps and	support
	resolution	resolution	uncompressed)	
QCIF	176 imes 144	88×72	9.1	required
CIF	352×288	176 imes 144	36.5	optional

H.261 Frame Sequence

- Two types of image frames are defined: Intraframes (I-frames) and Inter-frames (P-frames):
 - I-frames are treated as independent images. Transform coding method similar to JPEG is applied within each Iframe, hence "Intra"
 - P-frames are not independent: coded by a forward predictive coding method (prediction from a previous Pframe is allowed — not just from a previous I-frame)
 - Temporal redundancy removal is included in P-frame coding, whereas I-frame coding performs only spatial redundancy removal
 - To avoid propagation of coding errors, an I-frame is usually sent a couple of times in each second of the video

H.261 Frame Sequence.

Intra-frame (I-frame) Coding

- Macroblocks are of size 16 x 16 pixels for the Y frame, and 8 x 8 for Cb and Cr frames, since 4:2:0 chroma subsampling is employed. A macroblock consists of four Y, one Cb, and one Cr 8 x 8 blocks.
- For each 8 x 8 block a DCT transform is applied, the DCT coefficients then go through quantization zigzag scan and entropy coding.

Quantization in H.261

- The quantization in H.261 uses a constant step_size, for all DCT coefficients within a macroblock
- If we use DCT and QDCT to denote the DCT coefficients before and after the quantization, then for DC coefficients in Intra mode:

$$QDCT = round\left(\frac{DCT}{step_size}\right) = round\left(\frac{DCT}{8}\right)$$

for all other coefficients:

$$QDCT = \left\lfloor \frac{DCT}{step_size} \right\rfloor = \left\lfloor \frac{DCT}{2*scale} \right\rfloor$$

scale — an integer in the range of [1, 31]

Inter-frame (P-frame) Predictive Coding

Target frame

Motion vectors in H.261 are measured in units of full pixel and they have a limited range of ± 15 pixels, i.e., p = 15.

- For each macro block in the Target frame, a motion vector is allocated using one of the search methods
 - the difference MVD is sent for entropy coding:

MVD = MVPreceding - MVCurrent

- After the prediction, a difference macro block is derived to measure the prediction error
- Sometimes, a good match cannot be found, i.e., prediction error exceeds a certain acceptable level
 - MB itself is encoded (treated as an Intra MB) referred as non-motion compensated MB

Syntax of H.261 Video Bitstream

- a hierarchy of four layers: Picture, Group of Blocks (GOB), Macroblock, and Block.
 - The Picture layer: PSC (Picture Start Code) delineates boundaries between pictures. TR (Temporal Reference) provides a time-stamp for the picture.
 - The GOB layer: H.261 pictures are divided into regions of 11 x 3 macroblocks, each of which is called a Group of Blocks (GOB).

GOB 0	GOB 1
GOB 2	GOB 3
GOB 4	GOB 5
GOB 6	GOB 7
GOB 8	GOB 9
GOB 10	GOB 11

CIF

QCIF

2/3/09