
CSE 30341: Home Work Project 4

Assigned: Mar 31, 2008 and Due: Apr 16, 10:40AM

Late submissions will not be accepted. Group effort

File system using fuse:
In this project, we will implement a simple file system. Instead of modifying the hard disk directly, we will

implement the file system inside a single file (“disk”). We will also use the user level fie system tool

called fuse to interact with our “disk”. Fuse lets you intercept all the system calls issued to a file system

and allows you to implement them using your own code in user space (unlike kernel file systems that

live inside the kernel). Of course, fuse is not as fast as kernel level file systems. On the other hand, fuse

lets us build our own file systems without worrying about crashing the kernel etc. Next we describe

each of these steps in detail

1. Step 1: Develop a disk system:

First, we implement the disk inside a file. Let us call this file disk for the rest of this discussion.

Create a large file of size 512 MB to hold this disk. Logically split this disk into 512 byte blocks.

Now, implement two functions to operate on this disk: write_disk() and read_disk():

• write_disk(int blockno, void *data): this function will seek to blockno and write the data. The data

is always 512 bytes long. The actual seek location starts at 0 and proceeds in multiples of 512

(i.e., block 0, 1, 2 … start at 0, 512, 1024, …. bytes respectively). The function will return a -1 for

error conditions such as “Invalid block”.

• read_disk(int blockno, void *data): this function will seek to the blockno and read 512 bytes into

data. This function will return error code of -1 for conditions such as “Invalid block”.

Hints: Check out pread() and pwrite() for your implementation

For the rest of the project, you are only allowed to operate on disk using these two operations. This

means that, if you want to write one byte at location 10 (say), you need to read block 0, write the

value at location 10 of this block and then write this entire buffer back at block 0).

2. Step 2: Initialize the disk:

On the newly created disk, add any meta-data that you require. You would likely need to first create

entries for free-blocks as well as for directories. Typical file systems also maintain some headers to

help identify the disk. They also allow users to partition the disk into multiple independent areas. For

simplicity, you can assume a single level directory. Document any restrictions on the size of

directory entries. You should also keep track of free blocks by storing this information in the disk.

You will store all these information in the disk using the functions read_disk() and write_disk(). You

will create the directory information by getting free blocks, potentially updating the free block

information. When new files are created, you need to update the freeblocks table, update the

directory entry, etc.

3. Step 3: Interact with this file system using fuse:

Fuse intercepts the interactions with the file system and redirects them to your file system described

in Step 1. Fuse is available on the web at http://fuse.sourceforge.net/. I have downloaded the fuse

distribution: it is available on the expsys-desktop machines at ~surendar/fuse-2.7.3/. This version is

also installed in all of the expsys-desktop machines. There are many examples in the example/

directory. Start by looking at hello.c, a program that creates a file system that contains a file called

hello. If you read this file, you will always get the contents “Hello World!”.

 To run this file system:

a. Create a directory (or choose an empty directory – lets call ~/test)

b. Run ‘./hello ~/test’ (If you run this program as ‘./hello ~/test –d’ it will print debugging info)

c. Run ‘cat ~/test/hello’ or ‘ls ~/test/’

d. When done, run ‘fusermount –u ~/test/’ to remove your file system

I have left a simple template file called hwp04.c.

4. Step 4: Evaluation:

You will evaluate your file system by reporting the time taken (repeat your experiments to draw

statistically valid results) to create a new file of sizes, 10 KB, 100 KB, 1 MB and 10 MB. You can

create the files using a simple C program. You will also report the time taken to read each of these

files that are described above.

Clearly describe the layout of your disk, how and where you store the freeblock information, how

and where you store the directory entries and how and where you store the actual files.

5. Extra credit opportunities:

You can earn up to an extra 100% by building a more sophisticated file system. For example, you

might support hierarchical directory structure. You can also describe your own ideas for a cool file

system. Discuss any such ideas with the instructor before proceeding for extra credit.

