
page 12/1/08 CSE 30341: Operating Systems Principles

Outline

Scheduling algorithms
 FCFS
 SJF
 Priority scheduling

 Starvation
 RR
 Multi-level

Multi-processor scheduling
 Symmetric, Assymetric
 Processor affinity
 Load balancing
 SMT

Thread scheduling

page 22/1/08 CSE 30341: Operating Systems Principles

Shortest-Job-First (SJR) Scheduling

Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time

Two schemes:
 nonpreemptive – once CPU given to the process, it

cannot be preempted until completes its CPU burst
 preemptive – if a new process arrives with CPU burst

length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

SJF is optimal – gives minimum average waiting
time for a given set of processes

page 32/1/08 CSE 30341: Operating Systems Principles

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

page 42/1/08 CSE 30341: Operating Systems Principles

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

page 52/1/08 CSE 30341: Operating Systems Principles

!

1. t
n

= actual length of nth CPU burst

2. "
n+1 = predicted value for the next CPU burst

3. #, 0 $# $1

4. Define : () .1
1 nnn

t !""! #+=
=

Determining Length of Next CPU Burst

Can only estimate the length
Can be done by using the length of previous CPU

bursts, using exponential averaging

page 62/1/08 CSE 30341: Operating Systems Principles

Prediction of the Length of the Next
CPU Burst

page 72/1/08 CSE 30341: Operating Systems Principles

Examples of Exponential Averaging

α =0
τn+1 = τn

Recent history does not count
α =1

 τn+1 = α tn
Only the actual last CPU burst counts

 If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn -1 + …
 +(1 - α)j α tn -j + …
 +(1 - α)n +1 τ0

Since both α and (1 - α) are less than or equal to 1,
each successive term has less weight than its
predecessor

page 82/1/08 CSE 30341: Operating Systems Principles

Priority Scheduling

A priority number (integer) is associated with each
process

The CPU is allocated to the process with the
highest priority (smallest integer ≡ highest priority)
 Preemptive
 nonpreemptive

SJF is a priority scheduling where priority is the
predicted next CPU burst time

Problem ≡ Starvation – low priority processes may
never execute

Solution ≡ Aging – as time progresses increase the
priority of the process

page 92/1/08 CSE 30341: Operating Systems Principles

Round Robin (RR)

Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

 If there are n processes in the ready queue and the
time quantum is q, then each process gets 1/n of
the CPU time in chunks of at most q time units at
once. No process waits more than (n-1)q time
units.

Performance
 q large ⇒ FIFO
 q small ⇒ q must be large with respect to context switch,

otherwise overhead is too high

page 102/1/08 CSE 30341: Operating Systems Principles

Example of RR with Time Quantum = 20

Process Burst Time
P1 53
 P2 17
 P3 68
 P4 24

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

page 112/1/08 CSE 30341: Operating Systems Principles

Time Quantum and Context Switch
Time

page 122/1/08 CSE 30341: Operating Systems Principles

Turnaround Time Varies With The Time
Quantum

page 132/1/08 CSE 30341: Operating Systems Principles

Multilevel Queue

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

Each queue has its own scheduling algorithm
 foreground – RR
 background – FCFS

Scheduling must be done between the queues
 Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes; i.e.,
80% to foreground in RR

 20% to background in FCFS

page 142/1/08 CSE 30341: Operating Systems Principles

Multilevel Queue Scheduling

page 152/1/08 CSE 30341: Operating Systems Principles

Multilevel Feedback Queue

A process can move between the various queues;
aging can be implemented this way

Multilevel-feedback-queue scheduler defined by
the following parameters:
 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will

enter when that process needs service

page 162/1/08 CSE 30341: Operating Systems Principles

Example of Multilevel Feedback Queue

Three queues:
 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS

Scheduling
 A new job enters queue Q0 which is served FCFS. When

it gains CPU, job receives 8 milliseconds. If it does not
finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it is
preempted and moved to queue Q2.

page 172/1/08 CSE 30341: Operating Systems Principles

Multilevel Feedback Queues

page 182/1/08 CSE 30341: Operating Systems Principles

Multiple-Processor Scheduling

CPU scheduling more complex when multiple
CPUs are available

Homogeneous processors within a multiprocessor
Load sharing

 Preserve locality of data and state

Asymmetric multiprocessing – only one processor
accesses the operating system data structures,
alleviating the need for kernel data sharing among
processors

Some cooperative processes like to run with n
processors or none at all
 Gang scheduling to assign a group of processors

page 192/1/08 CSE 30341: Operating Systems Principles

Real-Time Scheduling

Hard real-time systems – required to complete a
critical task within a guaranteed amount of time

Soft real-time computing – requires that critical
processes receive priority over less fortunate ones

page 202/1/08 CSE 30341: Operating Systems Principles

Thread Scheduling

Local Scheduling – How the threads library
decides which thread to put onto an available
light weight process (LWP) (kernel thread)

Global Scheduling – How the kernel decides
which kernel thread to run next

page 212/1/08 CSE 30341: Operating Systems Principles

Operating System Examples

Windows XP scheduling
Linux scheduling

page 222/1/08 CSE 30341: Operating Systems Principles

Windows XP Priorities

page 232/1/08 CSE 30341: Operating Systems Principles

Linux Scheduling

Two algorithms: time-sharing and real-time
Time-sharing

 Prioritized credit-based – process with most credits is
scheduled next

 Credit subtracted when timer interrupt occurs
 When credit = 0, another process chosen
 When all processes have credit = 0, recrediting occurs

 Based on factors including priority and history

Real-time
 Soft real-time
 Posix.1b compliant – two classes

 FCFS and RR
 Highest priority process always runs first

page 242/1/08 CSE 30341: Operating Systems Principles

The Relationship Between Priorities and
Time-slice length

