
page 11/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Outline

Chapter 3: Processes
 So far -

 Processes are programs in execution
– Kernel keeps track of them using process control blocks
– PCBs are saved and restored at context switch

 Schedulers choose the ready process to run (more in Ch 5)
 Next -

 Processes create other processes
– On exit, status returned to parent

 Processes communicate with each other using shared
memory or message passing

Chapter 4: Threads

page 21/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Operations on processes

Process creation
 Parent creates new process forming a tree
 Child process can run concurrently with parent or not
 Child can share all resources, some or none at all

Process termination
 Exit for normal termination

 Output data from child to parent (via wait)
 exit() and _exit() functions

 Abort for abnormal kernel initiated termination
 Some OS require the presence of parent to allow child

page 31/23/08 CSE 30341: Operating Systems Principles - Spring 2008

C example of fork
int main()

{
pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* waits for child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

page 41/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Interprocess communications

 Independent process cannot affect or be affected
by the execution of another process

Cooperating process can affect or be affected by
the execution of another process

Advantages of process cooperation
 Information sharing
 Computation speed-up
 Modularity
 Convenience

page 51/23/08 CSE 30341: Operating Systems Principles - Spring 2008

IPC mechanisms

Shared memory
 Create shared memory region
 When one process writes into this region, the other

process can see it and vice versa

Message passing
 Explicitly send() and receive()

page 61/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Producer/consumer using shared
memory
Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Solution is correct, but can only use
BUFFER_SIZE-1 elements

page 71/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Insert/Remove methods

while (true) {
/* Produce an item */
 while (((in = (in + 1) % BUFFER SIZE count) == out)

 ; /* do nothing -- no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

}

while (true) {
 while (in == out)
 ; // do nothing -- nothing to consume

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;
return item;

}

page 81/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Message passing

Requires ways to name objects (same machine or
different machine).

Communications can be synchronous or
asynchronous.

May need to buffer messages that are not ready to
be read

page 91/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Chapter 4: Threads

Thread is the basic unit of CPU utilization. So far,
our implicit assumption was that each process has
a single thread of execution. However, each
process can have multiple threads of execution,
potentially working on more than one thing at the
same time

Threads in the same process share text, data,
open files, signals and other resources. Each
thread has its own execution context and stack.

page 101/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Single and Multithreaded Processes

page 111/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Sample pthreads program
void *add_runner(void *param){
 int upper = atoi(param);

 for (int i = 1; i <= upper; i++)
 sum += i;

 pthread_exit(0); }

void *sub_runner(void *param){
 int upper = atoi(param);

 for (int i = 1; i <= upper; i++)
 sum -= i;

 pthread_exit(0); }

page 121/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Sample pthreads library

int sum; /* this data is shared by the thread(s) */
main(int argc, char *argv[]) {
 pthread_t tid; /* the thread identifier */
 pthread_attr_t attr; /* set of attributes for the thread */

 pthread_attr_init(&attr); /* get the default attributes */
 pthread_create(&tid, &attr, add_runner, argv[1]);
 pthread_create(&tid, &attr, sub_runner, argv[1]);

 for (int i = 1; i <= 50; i++)
 printf("sum = %d\n",sum);
 pthread_join(tid,NULL);
 printf("final sum = %d\n",sum); }

page 131/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Benefits

Responsiveness - Interactive applications can be
performing two tasks at the same time (rendering,
spell checking)

Resource Sharing - Sharing resources between
threads is easy (too easy?)

Economy - Resource allocation between threads is
fast (no protection issues)

Utilization of MP Architectures - seamlessly assign
multiple threads to multiple processors (if
available). Future appears to be multi-core anyway.

page 141/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Thread types

User threads: thread management done by user-
level threads library. Kernel does not know about
these threads
 Three primary thread libraries:

 POSIX Pthreads
 Win32 threads
 Java threads

Kernel threads: Supported by the Kernel and so
more overhead than user threads
 Examples: Windows XP/2000, Solaris, Linux, Mac OS X

User threads map into kernel threads

page 151/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Multithreading Models

Many-to-One: Many user-level threads mapped to
single kernel thread
 If a thread blocks inside kernel, all the other threads

cannot run
 Examples: Solaris Green Threads, GNU Pthreads

One-to-One: Each user-level thread maps to kernel
thread

Many-to-Many: Allows many user level threads to
be mapped to many kernel threads
 Allows the operating system to create a sufficient

number of kernel threads

page 161/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Two-level Model

Similar to M:M, except that it allows a user thread
to be bound to kernel thread

Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

page 171/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Threading issues

What happens if a thread invokes fork() or exec()?
 Unixes support two fork() functions, once which creates a

new process with all threads and one with a single
threaded new process

Thread cancellation
 More tricky than process killing. Thread might be in the

middle of something.
 Asynchronous
 Deferred cancellation: Target thread periodically checks to

see if it had been cancelled

Signal handling: who should get a signal?
 E.g., pressing <Ctrl>-C (interrupt) or Divide-by-zero
 Thread to which signal applies, every thread, certain

threads or a specific thread to receive signals?

page 181/23/08 CSE 30341: Operating Systems Principles - Spring 2008

Issues (cont)

Thread pools:
 Web servers pre-allocate threads and have these threads

wait for new requests. Amortize the cost of thread
creation and bound the number of threads

