| Outline

» Chapter 2 (cont)

m Virtual machines

» Chapter 3: Processes

B Processes are programs in execution
® Kernel keeps track of them using process control blocks
® PCBs are saved and restored at context switch

B Schedulers choose the ready process to run

B Processes create other processes
® On exit, status returned to parent

B Processes communicate with each other using shared
memory or message passing

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

VMware Architecture

application

application

application

application

guest operating
system

(free BSD)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows NT)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows XP)

virtual CPU
virtual memory
virtual devices

virtualization layer

l

host operating system

(Linux)

hardware

memory

I/O devices

1/21/08

CSE 30341: Operating Systems Principles - Spring 2008

'Java program

Java API
: -—- class loader -t -- :
.class files ie - .class files

!

Java
interpreter

v

host system
(Windows, Linux, etc.)

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

Virtual machines for data centers

» The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines.
This isolation, however, permits no direct sharing
of resources.

» A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual
machine, instead of on a physical machine and so
does not disrupt normal system operation.

» The virtual machine concept is difficult to
Implement due to the effort required to provide an
exact duplicate to the underlying machine

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

Chapter 3: Process Concept

» Process — a program (like MS
Word) in execution; process
execution must progress Iin
sequential fashion 1

» A process includes:
B program counter, register

max
stack

m Stack (temporary values, 0
function parameters) , heap
(memory allocations) heap
B data section (global valuables),
text section (code) felz
text

The original slides were copyright Silberschatz, Galvin and Gagne, 2005

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

Process State

» As a process executes, it changes state
B new: The process is being created

B running: Instructions are being executed

B waiting: The process is waiting for some event to occur
B ready: process is waiting to be assigned to a processor
B terminated: The process has finished execution

admitted

interrupt exit terminated

I/O or event completion scheduﬂler dispateh I/O or event wait

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

Process Control Block (PCB)

Information associated with each
process and maintained by the
operating system

» Process state

» Program counter

» CPU registers

» CPU scheduling information

» Memory-management
information

» Accounting information
» 1/O status information

process state

process number

program counter

reqgisters

memory limits

list of open files

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

| CPU switch from P, to P,

» Save all state of P, restore all state of P,, save ..

B All these times are overhead
process P, operating system process P,

interrupt or system call

executing ﬂ / l

save state into PCB,

* s idle

reload state from PCB, y

/--

-idle interrupt or system calll

l _ l executing

save state into PCB,)

° > idle

) reload state from PCB,)

Executing II \

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit O

\

queue header PCB, PCB,
head > =
el o registers registers
el
head -—+——=
G PCB; PCB,, PCBg
/ ’ |
head 4
2l ..\
PCB;
head - —

CSE 30341: Operating Systems Principles - Spring 2008

| Schedulers

» Long-term scheduler (or job scheduler) — selects which processes
should be brought into the ready queue

B invoked very infrequently (seconds, minutes) = (may be slow)
» Short-term scheduler (or CPU scheduler) — selects which process
should be executed next and allocates CPU
B invoked very frequently (milliseconds) = (must be fast)

Medium-term scheduler moves some processes to disk

Processes can be described as either:

m 1/O-bound process — spends more time doing I/O than computations,
many short CPU bursts

m CPU-bound process — spends more time doing computations; few very
long CPU bursts

v v

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

| Operations on processes

» Process creation
B Parent creates new process forming a tree

m Child process can run concurrently with parent or not
B Child can share all resources, some or none at all

» Process termination

m Exit for normal termination
® Output data from child to parent (via wait)
® exit() and _exit() functions
B Abort for abnormal kernel initiated termination

B Some OS require the presence of parent to allow child

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

» C example of fork
int main()

pid_t pid;

/* fork another process */

pid = fork();

1f (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);

ks
else 1f (pid == 0) { /* child process */
execlp("/bin/1s", "1s", NULL);

else { /* parent process */
/* waits for child to complete */
wait (NULL);
printf ("Child Complete");
ex1t(0);

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

- Interprocess communications

» Independent process cannot affect or be affected
by the execution of another process

» Cooperating process can affect or be affected by
the execution of another process

» Advantages of process cooperation
B Information sharing
B Computation speed-up

B Modularity

B Convenience

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

IPC mechanisms

» Shared memory
B Create shared memory region

B \When one process writes into this region, the other
process can see it and vice versa

» Message passing
B Explicitly send() and receive()

process A M process A

shared

A

process B process B

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

Producer/consumer using shared

memor

» Shared data

#define BUFFER _SIZE 10
typedef struct {

}item;

item buffer[BUFFER_SIZE];

intin = 0;

int out = 0;
» Solution is correct, but can only use
BUFFER_SIZE-1 elements

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

Insert/Remove methods

while (true) {
/* Produce an item */
while (((in = (in + 1) % BUFFER SIZE count) == out)
; /* do nothing -- no free buffers */
buffer[in] = 1tem;
in = (in + 1) % BUFFER SIZE;
¥

while (true) {
while (in == out)
; // do nothing -- nothing to consume

// remove an item from the buffer
1tem = buffer[out];

out = (out + 1) % BUFFER SIZE;
return item;

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

-| Message passing

» Requires ways to name objects (same machine or
different machine).

» Communications can be synchronous or
asynchronous.

» May need to buffer messages that are not ready to
be read

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

Wrapup

» Processes are programs in execution
m Kernel keeps track of them using process control blocks
B PCBs are saved and restored at context switch

» Schedulers choose the ready process to run

» Processes create other processes
m On exit, status returned to parent

» Processes communicate with each other using
shared memory or message passing

» Tomorrow: threads

1/21/08 CSE 30341: Operating Systems Principles - Spring 2008

