| Outline

» Chapter 2 (cont)

m Virtual machines

» Chapter 3: Processes

B Processes are programs in execution
® Kernel keeps track of them using process control blocks
® PCBs are saved and restored at context switch

B Schedulers choose the ready process to run

B Processes create other processes
® On exit, status returned to parent

B Processes communicate with each other using shared
memory or message passing
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Virtual machines for data centers

» The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines.
This isolation, however, permits no direct sharing
of resources.

» A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual
machine, instead of on a physical machine and so
does not disrupt normal system operation.

» The virtual machine concept is difficult to
Implement due to the effort required to provide an
exact duplicate to the underlying machine
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Chapter 3: Process Concept

» Process — a program (like MS
Word) in execution; process
execution must progress Iin
sequential fashion 1

» A process includes:
B program counter, register

max
stack

m Stack (temporary values, 0
function parameters) , heap
(memory allocations) heap
B data section (global valuables),
text section (code) felz
text

The original slides were copyright Silberschatz, Galvin and Gagne, 2005
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Process State

» As a process executes, it changes state
B new: The process is being created

B running: Instructions are being executed

B waiting: The process is waiting for some event to occur
B ready: process is waiting to be assigned to a processor
B terminated: The process has finished execution

admitted

interrupt exit terminated

I/O or event completion scheduﬂler dispateh I/O or event wait
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Process Control Block (PCB)

Information associated with each
process and maintained by the
operating system

» Process state

» Program counter

» CPU registers

» CPU scheduling information

» Memory-management
information

» Accounting information
» 1/O status information

process state

process number

program counter

reqgisters

memory limits

list of open files
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| CPU switch from P, to P,

» Save all state of P, restore all state of P,, save ..

B All these times are overhead
process P, operating system process P,

interrupt or system call

executing ﬂ / l

save state into PCB,

* s idle

reload state from PCB, y

/--

-idle interrupt or system calll

l _ l executing

save state into PCB, )

° > idle

) reload state from PCB, )

Executing II \
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| Schedulers

» Long-term scheduler (or job scheduler) — selects which processes
should be brought into the ready queue

B invoked very infrequently (seconds, minutes) = (may be slow)
» Short-term scheduler (or CPU scheduler) — selects which process
should be executed next and allocates CPU
B invoked very frequently (milliseconds) = (must be fast)

Medium-term scheduler moves some processes to disk

Processes can be described as either:

m 1/O-bound process — spends more time doing I/O than computations,
many short CPU bursts

m CPU-bound process — spends more time doing computations; few very
long CPU bursts

v v
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| Operations on processes

» Process creation
B Parent creates new process forming a tree

m Child process can run concurrently with parent or not
B Child can share all resources, some or none at all

» Process termination

m Exit for normal termination
® Output data from child to parent (via wait)
® exit() and _exit() functions
B Abort for abnormal kernel initiated termination

B Some OS require the presence of parent to allow child
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» C example of fork
int main()

pid_t pid;

/* fork another process */

pid = fork();

1f (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);

ks
else 1f (pid == 0) { /* child process */
execlp("/bin/1s", "1s", NULL);

else { /* parent process */
/* waits for child to complete */
wait (NULL);
printf ("Child Complete");
ex1t(0);
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- Interprocess communications

» Independent process cannot affect or be affected
by the execution of another process

» Cooperating process can affect or be affected by
the execution of another process

» Advantages of process cooperation
B Information sharing
B Computation speed-up

B Modularity

B Convenience
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IPC mechanisms

» Shared memory
B Create shared memory region

B \When one process writes into this region, the other
process can see it and vice versa

» Message passing
B Explicitly send() and receive()

process A M process A

shared

A

process B process B
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Producer/consumer using shared

memor

» Shared data

#define BUFFER _SIZE 10
typedef struct {

}item;

item buffer[BUFFER_SIZE];

intin = 0;

int out = 0;
» Solution is correct, but can only use
BUFFER_SIZE-1 elements
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Insert/Remove methods

while (true) {
/* Produce an item */
while (((in = (in + 1) % BUFFER SIZE count) == out)
;  /* do nothing -- no free buffers */
buffer[in] = 1tem;
in = (in + 1) % BUFFER SIZE;
¥

while (true) {
while (in == out)
; // do nothing -- nothing to consume

// remove an item from the buffer
1tem = buffer[out];

out = (out + 1) % BUFFER SIZE;
return item;
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-| Message passing

» Requires ways to name objects (same machine or
different machine).

» Communications can be synchronous or
asynchronous.

» May need to buffer messages that are not ready to
be read
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Wrapup

» Processes are programs in execution
m Kernel keeps track of them using process control blocks
B PCBs are saved and restored at context switch

» Schedulers choose the ready process to run

» Processes create other processes
m On exit, status returned to parent

» Processes communicate with each other using
shared memory or message passing

» Tomorrow: threads
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