
page 1 4/4/08 CSE 30341: Operating Systems Principles

Chapter 11: File System Implementation

 Overview
  Allocation methods: Contiguous, Linked, Indexed, FAT
  Free-space management: Bit vector, Linked list
  Efficiency and performance
  Memory mapped files

page 2 4/4/08 CSE 30341: Operating Systems Principles

Contiguous Allocation

 Each file occupies a set of contiguous blocks
on the disk

 Simple – only starting location (block #) and
length (number of blocks) are required

 Random access

 Wasteful of space (dynamic storage-
allocation problem)

 Files cannot grow

page 3 4/4/08 CSE 30341: Operating Systems Principles

Contiguous Allocation of Disk Space

page 4 4/4/08 CSE 30341: Operating Systems Principles

Extent-Based Systems

 Many newer file systems (I.e. Veritas File System)
use a modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in
extents

 An extent is a contiguous block of disks
 Extents are allocated for file allocation
 A file consists of one or more extents.

page 5 4/4/08 CSE 30341: Operating Systems Principles

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

 Simple – need only starting address
 Free-space management system – no waste of space
 No random access

pointer
block =

page 6 4/4/08 CSE 30341: Operating Systems Principles

Linked Allocation

page 7 4/4/08 CSE 30341: Operating Systems Principles

File-Allocation Table (DOS FAT)

page 8 4/4/08 CSE 30341: Operating Systems Principles

Indexed Allocation

 Brings all pointers together into the index block.
 Logical view.

index table

page 9 4/4/08 CSE 30341: Operating Systems Principles

Example of Indexed Allocation

page 10 4/4/08 CSE 30341: Operating Systems Principles

Indexed Allocation (Cont.)

 Need index table
 Random access
 Dynamic access without external fragmentation,

but have overhead of index block.
 Mapping from logical to physical in a file of

maximum size of 256K words and block size of 512
words. We need only 1 block for index table.

page 11 4/4/08 CSE 30341: Operating Systems Principles

Indexed Allocation – Mapping (Cont.)



outer-index

index table
 file

page 12 4/4/08 CSE 30341: Operating Systems Principles

Combined Scheme: UNIX (4K bytes per block)

page 13 4/4/08 CSE 30341: Operating Systems Principles

…

0
 1
 2
 n-1

bit[i] =





0 ⇒ block[i] free

1 ⇒ block[i] occupied

Free-Space Management

 Bit vector (n blocks)

 Block number calculation = (number of bits per
word) * (number of 0-value words) + offset of first 1
bit

page 14 4/4/08 CSE 30341: Operating Systems Principles

Free-Space Management (Cont.)

 Bit map requires extra space
 Example:

 block size = 212 bytes
 disk size = 238 bytes (256 Gigabyte)
 n = 238/212 = 226 bits (or 8 Mbytes)
 Easy to get contiguous files
 Linked list (free list)

 Cannot get contiguous space easily
 No waste of space

 Grouping
 Counting

page 15 4/4/08 CSE 30341: Operating Systems Principles

Linked Free Space List on Disk

page 16 4/4/08 CSE 30341: Operating Systems Principles

Free-Space Management (Cont.)

 Need to protect against inconsistency:
 Pointer to free list
 Bit map

 Must be kept on disk
 Copy in memory and disk may differ
 Cannot allow for block[i] to have a situation where bit[i] = 1

in memory and bit[i] = 0 on disk
 Solution:

 Set bit[i] = 1 in disk
 Allocate block[i]
 Set bit[i] = 1 in memory

page 17 4/4/08 CSE 30341: Operating Systems Principles

Efficiency and Performance

 Efficiency dependent on:
 disk allocation and directory algorithms
 types of data kept in file’s directory entry

 Performance
 disk cache – separate section of main memory for

frequently used blocks
 free-behind and read-ahead – techniques to optimize

sequential access

 Compare these to LRU
 improve PC performance by dedicating section of

memory as virtual disk, or RAM disk

 It was observed that temporary files were
accessed frequently - hence make tmpfs
using RAM memory

page 18 4/4/08 CSE 30341: Operating Systems Principles

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be
treated as routine memory access by mapping a
disk block to a page in memory

 A file is initially read using demand paging. A page-
sized portion of the file is read from the file system
into a physical page. Subsequent reads/writes to/
from the file are treated as ordinary memory
accesses.

 Simplifies file access by treating file I/O through
memory rather than read() write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

page 19 4/4/08 CSE 30341: Operating Systems Principles

Memory Mapped Files

page 20 4/4/08 CSE 30341: Operating Systems Principles

Sample code using mmap

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

main(int argc, char *argv[], char *envp[]) {
 int fd;
 char *ptr, *path = (argc == 2) ? argv[1] : "file";

 /* Open a file and write some contents. If file already exists,
delete old contents */

 fd = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0660);
 write(fd, "hello", strlen("hello"));
 write(fd, " world", strlen(" world"));
 close(fd);

page 21 4/4/08 CSE 30341: Operating Systems Principles

(continued)

 fd = open(path, O_RDWR);

 // mmap(addr, len, prot, flags, fildes, off);
 ptr = mmap(0, 4, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, 0);
 ptr+=2;
 memcpy(ptr, "lp ", 3);
 munmap(ptr, 4);
 close(fd);
}
 Transform “hello world” into “help world”

page 22 4/4/08 CSE 30341: Operating Systems Principles

Page Cache

 A page cache caches pages rather than disk
blocks using virtual memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer
(disk) cache

 This leads to the following figure

page 23 4/4/08 CSE 30341: Operating Systems Principles

I/O Without a Unified Buffer Cache

page 24 4/4/08 CSE 30341: Operating Systems Principles

Unified Buffer Cache

 A unified buffer cache uses the same page cache
to cache both memory-mapped pages and ordinary
file system I/O

page 25 4/4/08 CSE 30341: Operating Systems Principles

I/O Using a Unified Buffer Cache

page 26 4/4/08 CSE 30341: Operating Systems Principles

Recovery

 Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies
 scandisk in DOS, fsck in unix

 Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)

 Recover lost file or disk by restoring data from
backup

page 27 4/4/08 CSE 30341: Operating Systems Principles

Log Structured File Systems

 Log structured (or journaling) file systems record
each update to the file system as a transaction

 All transactions are written to a log
  A transaction is considered committed once it is written

to the log
 However, the file system may not yet be updated

 The transactions in the log are asynchronously
written to the file system
  When the file system is modified, the transaction is

removed from the log

 If the file system crashes, all remaining
transactions in the log must still be performed

