Acyclic-Graph Directories

Have shared subdirectories and files

Acyclic-Graph Directories (Cont.)

- Two different names (aliasing)
- If dict deletes list ⇒ dangling pointer Solutions:
 - Backpointers, so we can delete all pointers
 Variable size records a problem
 - Backpointers using a daisy chain organization
 - Entry-hold-count solution
- New directory entry type
 - Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

- How do we guarantee no cycles?
 - Allow only links to file not subdirectories
 - Garbage collection
 - Every time a new link is added use a cycle detection algorithm to determine whether it is OK

File System Mounting

- A file system must be mounted before it can be accessed
- A unmounted file system is mounted at a mount point

(a) Existing. (b) Unmounted Partition

Mount Point

File Sharing

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method

File Sharing – Multiple Users

- User IDs identify users, allowing permissions and protections to be per-user
- Group IDs allow users to be in groups, permitting group access rights

File Sharing – Consistency Semantics

- Consistency semantics specify how multiple users are to access a shared file simultaneously
 - Similar to Ch 7 process synchronization algorithms
 - Tend to be less complex due to disk I/O and network latency (for remote file systems
 - Andrew File System (AFS) implemented complex remote file sharing semantics
 - Unix file system (UFS) implements:
 - Writes to an open file visible immediately to other users of the same open file
 - Sharing file pointer to allow multiple users to read and write concurrently
 - AFS has session semantics
 - Writes only visible to sessions starting after the file is closed

Protection

- ▶ File owner/creator should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Access Lists and Groups

- Mode of access: read, write, execute
- Three classes of users

		RWX
7	\Rightarrow	111
		RWX
6	\Rightarrow	1 1 0
		RWX
1	\Rightarrow	0 0 1
	7 6 1	6 ⇒

- Ask manager to create a group (unique name), say G, and add some users to the group.
- For a particular file (say *game*) or subdirectory, define an appropriate access.

Attach a group to a file

4/1/08

chgrp G game

Project – 4: FS using FUSE

Project – 4: FS using FUSE

Run