
page 1 3/25/08 CSE 30341: Operating Systems Principles

Optimal Algorithm

 Replace page that will not be used for longest
period of time

 Used for measuring how well your algorithm
performs

page 2 3/25/08 CSE 30341: Operating Systems Principles

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Implementation challenge: who keeps track of time
of access?

 Counter implementation
 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter

 When a page needs to be changed, look at the counters
to determine which are to change

1

2

3

5

4

4
 3

5

page 3 3/25/08 CSE 30341: Operating Systems Principles

LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page
numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 Unlike counter based approach, does not search for
replacement

page 4 3/25/08 CSE 30341: Operating Systems Principles

Use Of A Stack to Record The Most Recent Page References

page 5 3/25/08 CSE 30341: Operating Systems Principles

LRU Approximation Algorithms
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists). We do not know the

order, however.
 Additional reference bits

 Hardware sets bit, OS periodically shifts bit
 Second chance

 Need reference bit
 Clock replacement
 FIFO algorithm; if page to be replaced (in clock order) has

reference bit = 1 then:
 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to

same rules

page 6 3/25/08 CSE 30341: Operating Systems Principles

Second-Chance (clock) Page-Replacement Algorithm

 Enhanced second-chance (reference & modified bit)

page 7 3/25/08 CSE 30341: Operating Systems Principles

Counting Algorithms

 Keep a counter of the number of references that
have been made to each page

 LFU Algorithm: replaces page with smallest count.
One problem is that pages that were active a long
time back may survive. Can use a policy that shifts
the counter periodically.

 MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used

page 8 3/25/08 CSE 30341: Operating Systems Principles

Page buffering algorithms

 Maintain a pool of free-frames
 If page needs to be written to disk, allocate a page from

free pool, and once the write completes return that page
to the free pool

 List of modified files and when idle, write contents
to disk and reset modified bit

 Move pages to free-list, but if process needs that
page again, move it from free to active list

page 9 3/25/08 CSE 30341: Operating Systems Principles

Allocation of Frames

 How should the OS distribute the frames among
the various processes?

 Each process needs minimum number of pages -
at least the minimum number of pages required for
a single assembly instruction to complete

 Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

 Two major allocation schemes
 fixed allocation
 priority allocation

page 10 3/25/08 CSE 30341: Operating Systems Principles

Fixed Allocation
 Equal allocation – For example, if there are 100

frames and 5 processes, give each process 20
frames.

 Proportional allocation – Allocate according to the
size of process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=

∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

≈×=

≈×=

=

=

=

a

a

s
s
m

i

page 11 3/25/08 CSE 30341: Operating Systems Principles

Priority Allocation

 Use a proportional allocation scheme using
priorities rather than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process

with lower priority number

page 12 3/25/08 CSE 30341: Operating Systems Principles

Global vs. Local Allocation

 Global replacement – process selects a
replacement frame from the set of all frames; one
process can take a frame from another
 It is possible for processes to suffer page faults through

no fault of theirs
 However, improves system throughput

 Local replacement – each process selects from
only its own set of allocated frames
 May not use free space in the system

page 13 3/25/08 CSE 30341: Operating Systems Principles

Thrashing

 If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the

degree of multiprogramming because of low cpu
utilization

 another process added to the system

 Thrashing ≡ a process is busy swapping pages in
and out

page 14 3/25/08 CSE 30341: Operating Systems Principles

Thrashing (Cont.)

page 15 3/25/08 CSE 30341: Operating Systems Principles

Demand Paging and Thrashing
 Why does demand paging work?

Locality model
 Process migrates from one locality to another
 Localities may overlap
 E.g.
for (……) {
 computations;
}
for (…..) {
 computations;
}

 Why does thrashing occur?
Σ size of locality > total memory size

page 16 3/25/08 CSE 30341: Operating Systems Principles

Working-Set Model

 Δ ≡ working-set window ≡ a fixed number of
page references
Example: 10,000 instruction

 WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (varies in time)
 if Δ too small will not encompass entire locality
 if Δ too large will encompass several localities
 if Δ = ∞ ⇒ will encompass entire program

 D = Σ WSSi ≡ total demand frames
 if D > m ⇒ Thrashing
 Policy if D > m, then suspend one of the

processes

page 17 3/25/08 CSE 30341: Operating Systems Principles

Working-set model

page 18 3/25/08 CSE 30341: Operating Systems Principles

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit
 Example: Δ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of

all reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000
time units

page 19 3/25/08 CSE 30341: Operating Systems Principles

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

page 20 3/25/08 CSE 30341: Operating Systems Principles

Other Issues -- Prepaging

 Prepaging
 To reduce the large number of page faults that occurs at

process startup
 Prepage all or some of the pages a process will need,

before they are referenced
 But if prepaged pages are unused, I/O and memory was

wasted
 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than
the cost of prepaging
s * (1- α) unnecessary pages?

 α near zero ⇒ prepaging loses

page 21 3/25/08 CSE 30341: Operating Systems Principles

Other Issues – Page Size

 Page size selection must take into
consideration:
 fragmentation
 table size
 I/O overhead
 locality

page 22 3/25/08 CSE 30341: Operating Systems Principles

Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible
from the TLB

 TLB Reach = (TLB Size) X (Page Size)
 Ideally, the working set of each process is stored in

the TLB. Otherwise there is a high degree of page
faults.

 Increase the Page Size. This may lead to an
increase in fragmentation as not all applications
require a large page size

 Provide Multiple Page Sizes. This allows
applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation.

page 23 3/25/08 CSE 30341: Operating Systems Principles

Other Issues – Program Structure
 Program structure

 Int[128,128] data;
 Each row is stored in one page
 Program 1
 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

 Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

page 24 3/25/08 CSE 30341: Operating Systems Principles

Wrapup

 Memory hierarchy:
 Speed: L1, L2, L3 caches, main memory, disk etc.
 Cost: disk, main memory, L3, L2, L1 etc.

 achieve good speed by moving “interesting” objects
to higher cache levels while moving “uninteresting”
objects to lower cache levels

 Hardware provides reference bit, modify bit, page
access counters, page table validity bits

 OS sets them appropriately such that it will be
notified via page fault
 OS provides policies
 Hardware provides mechanisms

 Implement VM, COW etc. that are tuned to
observed workloads

