
page 1 3/16/08 CSE 30341: Operating Systems Principles

So far…

 Page
 Fixed size pages solve page allocation problem (and

external fragmentation)
  paging hardware (hierarchical, hashed and inverted

page table)

page 2 3/16/08 CSE 30341: Operating Systems Principles

8.6: Segmentation
 Memory-management scheme that supports user

view of memory
 A program is a collection of segments. A segment is

a logical unit such as:
 main program,
 procedure,
 function,
 method,
 object,
 local variables, global variables,
 common block,
 stack,
 symbol table, arrays

page 3 3/16/08 CSE 30341: Operating Systems Principles

User’s View of a Program

page 4 3/16/08 CSE 30341: Operating Systems Principles

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space
 physical memory space

page 5 3/16/08 CSE 30341: Operating Systems Principles

Segmentation Architecture

 Logical address consists of a two tuple:
 <segment-number, offset>,
 Segment table – maps two-dimensional physical

addresses; each table entry has:
 base – contains the starting physical address where the

segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the
segment table’s location in memory

 Segment-table length register (STLR) indicates
number of segments used by a program;

 segment number s is legal if s < STLR

page 6 3/16/08 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)
 Relocation.

 dynamic
 by segment table

 Sharing.
 shared segments
 same segment number

 Allocation.
 first fit/best fit
 external fragmentation

page 7 3/16/08 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)

 Protection. With each entry in segment table
associate:
 validation bit = 0 ⇒ illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code
sharing occurs at segment level

 Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

 A segmentation example is shown in the following
diagram

page 8 3/16/08 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 9 3/16/08 CSE 30341: Operating Systems Principles

Example of Segmentation

page 10 3/16/08 CSE 30341: Operating Systems Principles

Sharing of Segments

page 11 3/16/08 CSE 30341: Operating Systems Principles

Segmentation with Paging – MULTICS

 The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

 Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a
page table for this segment

page 12 3/16/08 CSE 30341: Operating Systems Principles

MULTICS Address Translation Scheme

page 13 3/16/08 CSE 30341: Operating Systems Principles

8.7: Intel 30386 Address Translation

 segmentation with paging for memory
management with a two-level paging scheme

page 14 3/16/08 CSE 30341: Operating Systems Principles

Linux on Intel 80x86

 Uses minimal segmentation to keep memory
management implementation more portable

 Uses 6 segments:
 Kernel code
 Kernel data
 User code (shared by all user processes, using logical

addresses)
 User data (likewise shared)
 Task-state (per-process hardware context)
 LDT

 Uses 2 protection levels:
 Kernel mode
 User mode

page 15 3/16/08 CSE 30341: Operating Systems Principles

Chapter 9: Virtual memory

 Virtual memory – separation of user logical
memory from physical memory.
 Only part of the program needs to be in memory for

execution.
 Logical address space can therefore be much larger than

physical address space.
 Allows address spaces to be shared by several

processes.
 Allows for more efficient process creation.

 Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

page 16 3/16/08 CSE 30341: Operating Systems Principles

Demand Paging

 Bring a page into memory only when it is needed
 Less I/O needed if not all pages are needed
 Less memory needed
 Faster response
 More users

 Page is needed ⇒ reference to it
 invalid reference ⇒ abort
 not-in-memory ⇒ bring to memory

page 17 3/16/08 CSE 30341: Operating Systems Principles

Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(1 ⇒ in-memory, 0 ⇒ not-in-memory)
  Initially valid–invalid but is set to 0 on all entries
  Example of a page table snapshot:

  During address translation, if valid–invalid bit in page table entry is 0 ⇒
page fault

1

1

1

1

0

0

0



Frame #
 valid-invalid bit

page table

page 18 3/16/08 CSE 30341: Operating Systems Principles

Page Table When Some Pages Are Not
in Main Memory

page 19 3/16/08 CSE 30341: Operating Systems Principles

Page Fault
 If there is ever a reference to a page, first reference will trap to

OS ⇒ page fault
 OS looks at another table to decide:

 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

page 20 3/16/08 CSE 30341: Operating Systems Principles

Steps in Handling a Page Fault

