So far...

Page

- Fixed size pages solve page allocation problem (and external fragmentation)
- paging hardware (hierarchical, hashed and inverted page table)

8.6: Segmentation

- Memory-management scheme that supports user view of memory
- ▶ A program is a collection of segments. A segment is a logical unit such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

User's View of a Program

Logical View of Segmentation

Segmentation Architecture

Logical address consists of a two tuple: <segment-number, offset>,

- Segment table maps two-dimensional physical addresses; each table entry has:
 - base contains the starting physical address where the segments reside in memory
 - *limit* specifies the length of the segment
- Segment-table base register (STBR) points to the segment table's location in memory
- Segment-table length register (STLR) indicates number of segments used by a program; segment number s is legal if s < STLR</p>

Segmentation Architecture (Cont.)

▶ Relocation.

- dynamic
- by segment table

Sharing.

- shared segments
- same segment number

Allocation.

- first fit/best fit
- external fragmentation

Segmentation Architecture (Cont.)

- Protection. With each entry in segment table associate:
 - validation bit = $0 \Rightarrow$ illegal segment
 - read/write/execute privileges
- Protection bits associated with segments; code sharing occurs at segment level
- Since segments vary in length, memory allocation is a dynamic storage-allocation problem
- A segmentation example is shown in the following diagram

Address Translation Architecture

Example of Segmentation

Sharing of Segments

Segmentation with Paging – MULTICS

- The MULTICS system solved problems of external fragmentation and lengthy search times by paging the segments
- Solution differs from pure segmentation in that the segment-table entry contains not the base address of the segment, but rather the base address of a page table for this segment

MULTICS Address Translation Scheme

8.7: Intel 30386 Address Translation

segmentation with paging for memory management with a two-level paging scheme

Linux on Intel 80x86

- Uses minimal segmentation to keep memory management implementation more portable
- Uses 6 segments:
 - Kernel code
 - Kernel data
 - User code (shared by all user processes, using logical addresses)
 - User data (likewise shared)
 - Task-state (per-process hardware context)
 - LDT

- Uses 2 protection levels:
 - Kernel mode
 - User mode

Chapter 9: Virtual memory

- Virtual memory separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution.
 - Logical address space can therefore be much larger than physical address space.
 - Allows address spaces to be shared by several processes.
 - Allows for more efficient process creation.
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Demand Paging

- Bring a page into memory only when it is needed
 - Less I/O needed if not all pages are needed
 - Less memory needed
 - Faster response
 - More users
- ▶ Page is needed ⇒ reference to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory

Valid-Invalid Bit

- With each page table entry a valid–invalid bit is associated (1 ⇒ in-memory, 0 ⇒ not-in-memory)
- Initially valid—invalid but is set to 0 on all entries
- Example of a page table snapshot:

Frame #	valid-invalid b	it
	1	
	1	
	1	
	1	
	0	
•		
	0	
	0	

page table

During address translation, if valid–invalid bit in page table entry is 0 ⇒ page fault

Page Table When Some Pages Are Not in Main Memory

Page Fault

- If there is ever a reference to a page, first reference will trap to OS ⇒ page fault
- OS looks at another table to decide:
 - Invalid reference ⇒ abort.
 - Just not in memory.
- Get empty frame.
- Swap page into frame.
- Reset tables, validation bit = 1.
- Restart instruction: Least Recently Used

auto increment/decrement location

Steps in Handling a Page Fault

