» Page

B Fixed size pages solve page allocation problem (and
external fragmentation)

B paging hardware (hierarchical, hashed and inverted
page table)

I 3/16/08 CSE 30341: Operating Systems Principles page 1

8.6: Segmentation

» Memory-management scheme that supports user
view of memory

» A program is a collection of segments. A segment is
a logical unit such as:

main program,
procedure,
function,
method,
object,

local variables, global variables,
common block,
stack,

symbol table, arrays

3/16/08 CSE 30341: Operating Systems Principles page 2

User’s View of a Program

subroutine

main
program

logical address

I 3/16/08 CSE 30341: Operating Systems Principles page 3

Logical View of Segmentation

user space physical memory space

3/16/08 CSE 30341: Operating Systems Principles

Segmentation Architecture

» Logical address consists of a two tuple:
<segment-number, offset>,

» Segment table — maps two-dimensional physical
addresses; each table entry has:

B base — contains the starting physical address where the
segments reside in memory

W /imit — specifies the length of the segment

» Segment-table base register (STBR) points to the
segment table’s location in memory

» Segment-table length register (STLR) indicates
number of segments used by a program;

segment number sis legal if s < STLR

3/16/08 CSE 30341: Operating Systems Principles page 5

Segmentation Architecture (Cont.)

» Relocation.
B dynamic
B by segment table

» Sharing.
B shared segments
B same segment number

» Allocation.
m first fit/best fit
B external fragmentation

I 3/16/08 CSE 30341: Operating Systems Principles page 6

Segmentation Architecture (Cont.)

» Protection. With each entry in segment table
associate:
B validation bit = 0 = illegal segment
B read/write/execute privileges

» Protection bits associated with segments; code
sharing occurs at segment level

» Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

» A segmentation example is shown in the following
diagram

3/16/08 CSE 30341: Operating Systems Principles page 7

v

no

trap: addressing error

segment
table

> o

physical memory

3/16/08 CSE 30341: Operating Systems Principles

page 8

Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1] 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
41000 | 4700
segment table 4300
segment 1 segment 2 segment 2
4700
logical address space segment 4
5700
6300
segment 1
6700
physical memory

3/16/08 CSE 30341: Operating Systems Principles page 9

Sharing of Segments

editor

segment 0

data 1 limit | base

0| 25286 | 43062
1| 4425 | 68348

segment 1

segment table

. process P,
logical memory
process P,
editor
segment 0
limit | base

data 2

0| 25286 | 43062
1| 8850 | 90003

segment 1

segment table
process P,

logical memory
process P,

43062

68348
72773

90003

98553

editor

data 1

data 2

physical memory

3/16/08 CSE 30341: Operating Systems Principles page 10

Segmentation with Paging — MULTICS

» The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

» Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a

page table for this segment

3/16/08 CSE 30341: Operating Systems Principles page 11

logical address

L yes

segment | page-—table
length base no I:d:|

segment table

memory

—>®—>f—>|f|d"|—>

physical
address

page table for
segment s

3/16/08 CSE 30341: Operating Systems Principles page 12

8.7: Intel 30386 Address Translation

» segmentation with paging for memory
management wi - '

logical address selector offset

descriptor table

segment descriptor —b@d—

linear address | directory| page | offset l page frame

physical address

]

A 4

page directory page table

» directory entry = » page table entry

page directory | T

base register

I 3/16/08 CSE 30341: Operating Systems Principles page 13

-i Linux on Intel 80x86

» Uses minimal segmentation to keep memory
management implementation more portable

» Uses 6 segments:
B Kernel code
B Kernel data

m User code (shared by all user processes, using logical
addresses)

B User data (likewise shared)
B Task-state (per-process hardware context)
mLDT

» Uses 2 protection levels:

B Kernel mode
B User mode

I 3/16/08 CSE 30341: Operating Systems Principles page 14

Chapter 9: Virtual memory

» Virtual memory — separation of user logical
memory from physical memory.

® Only part of the program needs to be in memory for
execution.

B Logical address space can therefore be much larger than
physical address space.

B Allows address spaces to be shared by several
processes.

m Allows for more efficient process creation.

» Virtual memory can be implemented via:
B Demand paging
B Demand segmentation

3/16/08 CSE 30341: Operating Systems Principles page 15

-\ Demand Paging

» Bring a page into memory only when it is needed
B Less I/O needed if not all pages are needed
B Less memory needed
m Faster response
B More users

» Page is needed = reference to it

® invalid reference = abort
B not-in-memory = bring to memory

3/16/08 CSE 30341: Operating Systems Principles page 16

Valid-Invalid Bit

» With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

» Initially valid—invalid but is set to 0 on all entries
» Example of a page table snapshot:

Frame # valid-invalid bit

page table

» During address translation, if valid—invalid bit in page table entry is 0 =
page fault

I 3/16/08 CSE 30341: Operating Systems Principles page 17

Page Table When Some Pages Are Not
in Main Memor

0 A 2
valid—invalid
1 B frame bit 3
2 C P
0| 4 |v 4
g 1 i 5
2|1 6 |v
F 4 i 7
G 5(9 |v
o [k 8
7 H 7 i 9
logical page table 10
memory
11 v
12
13
14
15
physical memory

3/16/08 CSE 30341: Operating Systems Principles page 18

Page Fault

» If there is ever a reference to a page, first reference will trap to
OS = page fault

» OS looks at another table to decide:

m Invalid reference = abort.
m Just not in memory.

Get empty frame.
Swap page into frame.
Reset tables, validation bit = 1.

Restart instruction: Least Recently Used
m block mov

v Vv Vv Vv

B auto increment/decrement location

I 3/16/08 CSE 30341: Operating Systems Principles page 19

i Steps in Handling a Page Fault

page is on
backing store

operating
system

@

trap

reference

load M |« |

restart page table
instruction

free frame |« —— >
® @

reset page bring in
table missing page

physical
memory

I 3/16/08 CSE 30341: Operating Systems Principles page 20

