
page 1 3/11/08 CSE 30341: Operating Systems Principles

Paging Hardware With TLB

We are attempting to speedup
 address lookups

page 2 3/11/08 CSE 30341: Operating Systems Principles

Effective Access Time

 Associative Lookup = ε time unit
 Assume memory cycle time is 1 microsecond
 Hit ratio – percentage of times that a page

number is found in the associative registers;
ratio related to number of associative registers

 Hit ratio = α
 Effective Access Time (EAT)
 EAT = (1 + ε) α + (2 + ε)(1 – α)
 = 2 + ε – α

page 3 3/11/08 CSE 30341: Operating Systems Principles

TLB

 Some TLBs support address-space ID
 OS loans a unique value per process
 If current process ASID != TLB ASID, then don’t use it

 Otherwise, TLBs are flushed at context switch

 Question: what affects TLB hit ratio?
 For code?
 For data?

page 4 3/11/08 CSE 30341: Operating Systems Principles

8.4.3: Memory Protection

 Need some mechanism to identify that a page is not
allocated to a process (even though the page table
will have an entry for this logical page)

 Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page
 “invalid” indicates that the page is not in the process’ logical

address space

page 5 3/11/08 CSE 30341: Operating Systems Principles

Valid (v) or Invalid (i) Bit In A Page Table

Next chapter, we will see more uses for this bit

page 6 3/11/08 CSE 30341: Operating Systems Principles

8.5: Page Table Structure

 Problem is that page tables are per-process
structure and they can be large
 Consider 64 bit address space and page size of 8 KB

 Page table size = 251 or 2*1015 entries

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

page 7 3/11/08 CSE 30341: Operating Systems Principles

Hierarchical Page Tables

 Break up the logical address space into multiple
page tables

 A simple technique is a two-level page table

page 8 3/11/08 CSE 30341: Operating Systems Principles

Two-Level Paging Example
  A logical address (on 32-bit machine with 4K page size) is divided

into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

  Since the page table is paged, the page number is further divided
into:
 a 10-bit page number
 a 10-bit page offset

  Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12

page 9 3/11/08 CSE 30341: Operating Systems Principles

Two-Level Page-Table Scheme

page 10 3/11/08 CSE 30341: Operating Systems Principles

Address-Translation Scheme

 Address-translation scheme for a two-level 32-bit
paging architecture

page 11 3/11/08 CSE 30341: Operating Systems Principles

Hashed Page Tables
 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

 Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

page 12 3/11/08 CSE 30341: Operating Systems Principles

Hashed Page Table

page 13 3/11/08 CSE 30341: Operating Systems Principles

Inverted Page Table

 One entry for each real frame of memory
 Entry consists of the virtual address of the page

stored in that real memory location, with information
about the process that owns that page

 Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

 Use hash table to limit the search to one — or at most
a few — page-table entries

page 14 3/11/08 CSE 30341: Operating Systems Principles

Inverted Page Table Architecture

page 15 3/11/08 CSE 30341: Operating Systems Principles

Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).
 Shared code must appear in same location in the logical

address space of all processes

 Private code and data
 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear

anywhere in the logical address space

page 16 3/11/08 CSE 30341: Operating Systems Principles

Shared Pages Example

page 17 3/11/08 CSE 30341: Operating Systems Principles

8.6: Segmentation
 Memory-management scheme that supports user

view of memory
 A program is a collection of segments. A segment is

a logical unit such as:
 main program,
 procedure,
 function,
 method,
 object,
 local variables, global variables,
 common block,
 stack,
 symbol table, arrays

page 18 3/11/08 CSE 30341: Operating Systems Principles

User’s View of a Program

page 19 3/11/08 CSE 30341: Operating Systems Principles

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

page 20 3/11/08 CSE 30341: Operating Systems Principles

Segmentation Architecture

 Logical address consists of a two tuple:
 <segment-number, offset>,
 Segment table – maps two-dimensional physical

addresses; each table entry has:
 base – contains the starting physical address where the

segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the
segment table’s location in memory

 Segment-table length register (STLR) indicates
number of segments used by a program;

 segment number s is legal if s < STLR

page 21 3/11/08 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)
 Relocation.

 dynamic
 by segment table

 Sharing.
 shared segments
 same segment number

 Allocation.
 first fit/best fit
 external fragmentation

page 22 3/11/08 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)

 Protection. With each entry in segment table
associate:
 validation bit = 0 ⇒ illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code
sharing occurs at segment level

 Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

 A segmentation example is shown in the following
diagram

page 23 3/11/08 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 24 3/11/08 CSE 30341: Operating Systems Principles

Example of Segmentation

page 25 3/11/08 CSE 30341: Operating Systems Principles

Sharing of Segments

page 26 3/11/08 CSE 30341: Operating Systems Principles

Segmentation with Paging – MULTICS

 The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

 Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a
page table for this segment

page 27 3/11/08 CSE 30341: Operating Systems Principles

MULTICS Address Translation Scheme

page 28 3/11/08 CSE 30341: Operating Systems Principles

8.7: Intel 30386 Address Translation

 segmentation with paging for memory
management with a two-level paging scheme

page 29 3/11/08 CSE 30341: Operating Systems Principles

Linux on Intel 80x86

 Uses minimal segmentation to keep memory
management implementation more portable

 Uses 6 segments:
 Kernel code
 Kernel data
 User code (shared by all user processes, using logical

addresses)
 User data (likewise shared)
 Task-state (per-process hardware context)
 LDT

 Uses 2 protection levels:
 Kernel mode
 User mode

