| Outline (Chapters 1 and 2)

» Chapter 1

B Introduce important concepts (caching)

» Chapter 2

B Interacting with services provided by the OS
® System calls - link between application programs and OS
® System programs - users interact using programs

B [nstallation, customization etc.
® booting

The original slides were copyright Silberschatz, Galvin and Gagne, 2005

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 1

Recap OS:allows for program execution

» load a program into memory and run that program,
end execution, either normally or abnormally
(indicating error)

m |/O operations - A running program requires 1/O, which
may involve a file, an 1/O device, shared with other
programs or computers

m Error detection — OS are constantly aware of errors

® May occur in the CPU and memory hardware, in 1/0O
devices and in user program

® For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

® Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 2

Storage structure

» Computer programs must be stored in main memory

B Fast memory is expensive - we use hierarchy and move
stuff around to achieve cost benefits and speed

B Implicit or explicit

registers ﬁ
[| Il
i v

cache

I I
I v

main memory

&N |
I

\ 4
electronic disk

L | [

I v
magnetic disk
I
optical disk U
Ty

magnetic tapes

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 3

Hierarchy performance difference

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size = KB > 16 MB = [6GHE > 100 GB
Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 025-0.5 05-25 80 - 250 5,000.000

Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 2{01—)20

Managed by compiler hardware operating system | operating system

Backed by cache main memory disk CD or tape

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 4

-| Caching principle

» Caching is an important principle, performed at
many levels in a computer (in hardware, operating
system, software)

» Information “in use” is copied from slower to faster
storage temporarily

» Faster storage (cache) checked first to determine if
information is there

m If it is (cache hit), information used directly from the
cache (fast)

m If not (cache miss), data copied to cache and used there
® May need to evict some other data (cache replacement)
» Cache smaller than storage being cached
B Cache management important design problem
m Cache size and replacement policies are important
B Sometimes bring data before needed (pre-fetch)

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 5

- Interfacing with OS

» User interface - Almost all operating systems have
a user interface (Ul). Varies between

B Command-Line (CLI) (e.g., shells in UNIX,
command.exe in Windows). The command line may itself
perform functions or call other system programs to
implement functions (e.g. in UNIX, /bin/rm to remove
files) [more later]

B Graphics User Interface (GUI) (e.g., MS windows, MAC
OS X Aqua, Unix X & variants). point and click interface

m Batch. Commands are given using a file/command script
to the OS and are executed with little user interaction.

Used in high performance computers. (e.g. .bat files in

DOS, shell scripts, JCL interpreters for Main frames)

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 6

-| System Calls

» Programming interface to the services provided by
the OS

» Typically written in a high-level language (C, C++)

» Mostly accessed by programs via a high-level
Application Program Interface (API) rather than
direct system call use

» Three most common APIls are Win32 API for
Windows, POSIX API for POSIX-based systems
(including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual
machine (JVM)

» Why use APls rather than system calls?

B Underlying systems calls (error codes) can be more
complicated. API gives a uniform, portable interface

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 7

- Example of System Calls

» System call sequence to copy the contents of one
file to another file (POSIX like C pseudo code)
(bold are API system calls)

write(1, “Input file\n”, 11);
read(0, &buffer, 100);

fd = open(buffer, O_ RDONLY);

outfd = open(buffer, O _ WRONLY | O _CREAT | O TRUNC,
0666);

if (outfd < 0) abort(“File creation failed”);

close(fd);

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 8

Standard C Library Example

1/17/08

» C program invoking printf() library call, which calls
write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings");

return o;
user
mode

standard-CHibrary
kernel

mode
erite ()

write ()
system call

)

CSE 30341: Operating Systems Principles - Spring 2008

page 9

-| System Call Implementation

» A number associated with each system call

B System-call interface maintains a table indexed according
to these numbers

B Additional info: check /usr/include/sys/syscall.h

» The system call interface invokes intended system
call in OS kernel and returns status of the system
call and any return values

» The caller need know nothing about how the
system call is implemented

m Just needs to obey API and understand what OS will do
as a result call

B Details of OS interface hidden from programmer by API

® Managed by run-time support library (set of functions built
into libraries included with compiler)

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 10

APl — System Call — OS Relationship

user application

user
mode

system call interface
kernel

mode A

> - open ()
. Implementation
i » of open ()
" system call

return

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 11

-| System Call Parameter Passing

» More information is required than simply identity of
desired system call

m Exact type and amount of information vary according to
OS and call

» Three general methods used to pass parameters to
the OS

B Simplest: pass the parameters in hardware registers
® In some cases, may be more parameters than registers

B Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register
® This approach taken by Linux and Solaris
B Parameters placed, or pushed, onto the stack by the

program and popped off the stack by the operating
system

® Block and stack methods do not limit the number or length of
parameters being passed

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 12

Parameter Passing via Table

X

register

X: parameters
for call

—® use parameters code for
load address X / from table X system
system call 13 — > call 13

user program

operating system

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 13

-| Strace program to trace system calls

» Try a program called strace in Linux

» strace date
m execve("/bin/date", ["date"], [/* 57 vars */]) =0
B uname({sys="Linux", node="sys.cse.nd.edu", ...}) =0
m brk(0) = 0x8621000

B access('/etc/ld.so.preload”, R_OK) =-1 ENOENT (No
such file or directory)

m open("/opt/intel_cc_80/lib/tls/i686/sse2/librt.so.1",
O_RDONLY) =-1 ENOENT (No such file or directory)

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 14

System Programs

» Provide a convenient environment for program development
and execution. Some of them are simply user interfaces to
system calls; others are considerably more complex

m File management - Create, delete, copy, edit, rename, print,
dump, list, and generally manipulate files and directories

B Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

B Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging
systems for higher-level and machine language

B Communications - chat, web browsing, email, remote login, file
transfers

B Status information - system info such as date, time, amount of
available memory, disk space, number of users

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 15

-| Operating System Generation

» Operating systems are designed to run on any of a
class of machines; the system must be configured
for each specific computer site

» SYSGEN program obtains information concerning
the specific configuration of the hardware system

» Booting — starting a computer by loading the kernel

» Bootstrap program — code stored in ROM that is
able to locate the kernel, load it into memory, and
start its execution

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 16

System Boot

» Operating system must be made available to
hardware so hardware can start it

m Small piece of code — bootstrap loader, locates the
kernel, loads it into memory, and starts it

B Sometimes two-step process where boot block at fixed
location loads bootstrap loader

B When power initialized on system, execution starts at a
fixed memory location

® Firmware used to hold initial boot code

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 17

Wrapup

» System calls provide a mechanism for user
programs to access OS services

B System programs use system calls to provide
functionality to users

» Other issues such as bootstrapping to initialize the
OS

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 18

Operating System Design and Implementation

» Design and Implementation of OS affected by
choice of hardware, type of system

» User goals and System goals

B User goals — operating system should be convenient to
use, easy to learn, reliable, safe, and fast

B System goals — operating system should be easy to
design, implement, and maintain (portable?), as well as
flexible, reliable, error-free, and efficient

» Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

B The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later

1/17/08 CSE 30341: Operating Systems Principles - Spring 2008 page 19

