
page 13/9/08 CSE 30341: Operating Systems Principles

So far in memory management…

Logical vs physical address
 MMU for translation

Swapping: moving memory back and forth from
storage

Contiguous allocation
 Base and limit register for protection

 MMU supported

External and internal fragmentation

page 23/9/08 CSE 30341: Operating Systems Principles

Paging for noncontiguous allocation

Logical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available

Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes)

Divide logical memory into blocks of same size
called pages.

Keep track of all free frames
To run a program of size n pages, need to find n

free frames and load program
Set up a page table to translate logical to physical

addresses
This scheme will create internal fragmentation

page 33/9/08 CSE 30341: Operating Systems Principles

Address Translation Scheme

Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

 Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

page 43/9/08 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 53/9/08 CSE 30341: Operating Systems Principles

Paging Example

page 63/9/08 CSE 30341: Operating Systems Principles

Paging Example

page 73/9/08 CSE 30341: Operating Systems Principles

Free Frames

Before allocation After allocation

page 83/9/08 CSE 30341: Operating Systems Principles

Implementation of Page Table

Page table is kept in main memory
Page-table base register (PTBR) points to the page

table
Page-table length register (PRLR) indicates size of

the page table
 In this scheme every data/instruction access

requires two memory accesses. One for the page
table and one for the data/instruction.

The two memory access problem can be solved by
the use of a special fast-lookup hardware cache
called associative memory or translation look-
aside buffers (TLBs)

page 93/9/08 CSE 30341: Operating Systems Principles

Associative Memory

Associative memory – parallel search

Address translation (A´, A´´)
 If A´ is in associative register, get frame # out
Otherwise get frame # from page table in memory

Page # Frame #

page 103/9/08 CSE 30341: Operating Systems Principles

Paging Hardware With TLB

page 113/9/08 CSE 30341: Operating Systems Principles

Effective Access Time

Associative Lookup = ε time unit
Assume memory cycle time is 1 microsecond
Hit ratio – percentage of times that a page

number is found in the associative registers;
ratio related to number of associative registers

Hit ratio = α
Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α

