Module 3: Memory management

» Module 1 and 2 dealt with processes, scheduling
and synchronization

» Next two modules will deal with memory and
storage

» Processes require data to perform useful work
B Stable storage (e.g. disk) is slow
B Transient storage (e.g. RAM memory) is faster
® multiple levels with different speeds

» Goal is to get as much performance out of the
system by moving data between the levels

2/26/08 CSE 30341: Operating Systems Principles



Memory management problem

» Physical memory large contiguous address

» N

® protect each process from others
— Require hardware support - managed by OS

» Ideally the presence of multiple programs is transparent to
the application
® Relocation - use logical rather than physical addresses
® Require hardware support - managed by OS
» Each program can access more than physical memory
B Swap contents to lower levels in memory hierarchy
B OS manages allocation of memory resources

2/26/08 CSE 30341: Operating Systems Principles



Chapter 8. Memory management

» Program must be brought into memory and placed
within a process for it to be run

» Memory hierarchy: Processor -> Registers, Cache
(L1, L2, L3 ..), Main memory, hard disk

B The closer to processor, the faster and expensive

» User programs go through several steps before
being run

2/26/08 CSE 30341: Operating Systems Principles



Multistep Processing of a User Program

source
program
compiler or compile
assembler time
h 4
object
module
other
object
modules
linkage
editor
h 4
load . load
module time
system
library
loader
dynamicall
loaded -
system ¥ .
library :
in-memory .
dynamic binary X ﬁ)r(neef:t(?hor:
linking memory time)
image

I 2/26/08 CSE 30341: Operating Systems Principles



-| Consider the helloworld.c

#include <stdio.h>

main() {
printf(“Hello world\n”);

» gcc -v helloworld.c (shows what really happens)

1. cc1 -v helloworld.c -dumpbase helloworld.c -auxbase
helloworld -version -0 /tmp/ccO9ORSny.s

2. as -V -Qy -o /tmp/ccoe1JH2.0 /tmp/ccOORSNYy.s

3. collect2 -m elf i386 -dynamic-linker Id-linux.s0.2 crt1.0 crti.o
crtbegin.o /tmp/ccoe1JH2.0 -Igcc -Igcc_s -Ic crtend.o crtn.o

» Idd a.out
libc.s0.6 => /lib/tls/libc.s0.6 (0x009aa000)
/lib/ld-linux.s0.2 (0x00990000)

I 2/26/08 CSE 30341: Operating Systems Principles



- gcc -S helloworld.c to produce asm

"helloworld.c"
.section .rodata
.LCO:
.string "Hello world\n"
text
.globl main
type main, @function
main:
pushl %ebp

file

subl  $12, %esp
pushl $.LCO
call printf
addl $16, %esp
leave

ret

I 2/26/08 CSE 30341: Operating Systems Principles



Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can
happen at three different stages

» Compile time: If memory location known a priori,
absolute code can be generated; must recompile
code if starting location changes

» Load time: Must generate relocatable code if
memory location is not known at compile time

» Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware
support for address maps (e.g., base and limit

registers).

2/26/08 CSE 30341: Operating Systems Principles



- Looking into the a.out file

» nm a.out
0804958c A bss_start

080482e4 t call gmon_start
0804958c b completed.1
08049490d CTOR END
0804948cd CTOR_LIST
08049580 D  data_start
08049580 W data_start
08048430t do_global ctors aux
08048308t do_global dtors aux
08049584 D  dso handle

2/26/08 CSE 30341: Operating Systems Principles



Loading programs

» Dynamic loading
B Routine is not loaded until it is called
B Better memory-space utilization; unused routine is never loaded

B Useful when large amounts of code are needed to handle infrequently
occurring cases

B No special support from the operating system is required implemented
through program design

» Dynamic Linking
B Linking postponed until execution time

B Small piece of code, stub, used to locate the appropriate memory-
resident library routine

B Stub replaces itself with the address of the routine, and executes the
routine

B Operating system needed to check if routine is in processes’ memory
address

Dynamic linking is particularly useful for libraries

I 2/26/08 CSE 30341: Operating Systems Principles




- Logical vs. Physical Address Space

» The concept of a logical address space that is bound
to a separate physical address space is central to
proper memory management

B Logical address — generated by the CPU; also referred to
as virtual address

B Physical address — address seen by the memory unit

» Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses

differ in execution-time address-binding scheme

I 2/26/08 CSE 30341: Operating Systems Principles



Memory-Management Unit (MMu)

» Hardware device that maps virtual to physical
address

» In MMU scheme, the value in the relocation register
IS added to every address generated by a user
process at the time it is sent to memory

» The user program deals with /ogical addresses; it
never sees the real physical addresses

2/26/08 CSE 30341: Operating Systems Principles



Dynamic relocation using a relocation
reqgister

CPU

logical
address

relocation
register

14000
physical
address

_|_
14346
MMU

MMU is a hardware component

P

memory

OS manages the relocation register

2/26/08

CSE 30341: Operating Systems Principles

(e.g. modified while loading programs)



-| Swapping

4

4

2/26/08 CSE 30341: Operating Systems Principles

» A process can be swapped temporarily out of

memory to a backing store, and then brought back
into memory for continued execution

Backing store — fast disk large enough to
accommodate copies of all memory images for all
users; must provide direct access to these memory
Images

Roll out, roll in — swapping variant used for priority-
based scheduling algorithms; lower-priority process
IS swapped out so higher-priority process can be
loaded and executed

Major part of swap time is transfer time; total
transfer time is directly proportional to the amount
of memory swapped

Modified versions of swapping are found on many
systems (i.e., UNIX, Linux, and Windows)



Schematic View of Swapping

operating
system

process P,

process P,|

user
space

backing store

main memory

2/26/08 CSE 30341: Operating Systems Principles



-| Contiguous Allocation

» Main memory usually into two partitions:

B Resident operating system, usually held in low memory
with interrupt vector

B User processes then held in high memory

» Single-partition allocation

B Relocation-register scheme used to protect user processes
from each other, and from changing operating-system code
and data

B Relocation register contains value of smallest physical
address; limit register contains range of logical addresses —
each logical address must be less than the limit register

I 2/26/08 CSE 30341: Operating Systems Principles



A base and a limit register define a
' logical address space

operating
system
25600
process
30004 30004
process base
42094 12090
limit
process
88000
102400

I 2/26/08 CSE 30341: Operating Systems Principles



HW address protection with base and
limit reqgisters

base + limit

address es es
CPU Y y

\V
A
4

no no

trap to operating system
monitor—addressing error memory

I 2/26/08 CSE 30341: Operating Systems Principles



Contiguous Allocation (Cont.)

» Multiple-partition allocation

B Hole — block of available memory; holes of various size
are scattered throughout memory

m When a process arrives, it is allocated memory from a
hole large enough to accommodate it

B Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

O O OS O
process 5 process 5 process 5 process 5
process 9 process 9
process 8 | > —> —> process 10
process 2 process 2 process 2 process 2

2/26/08 CSE 30341: Operating Systems Principles



Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

» First-fit. Allocate the first hole that is big enough

» Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered by
size. Produces the smallest leftover hole.

» Worst-fit: Allocate the /argest hole; must also
search entire list. Produces the largest leftover
hole.

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

2/26/08 CSE 30341: Operating Systems Principles



- Fragmentation

» External Fragmentation — total memory space
exists to satisfy a request, but it is not contiguous

» Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

» Reduce external fragmentation by compaction

m Shuffle memory contents to place all free memory together
In one large block

B Compaction is possible only if relocation is dynamic, and is
done at execution time

m |/O problem - 1/O may be performed by a DMA controller
® Latch job in memory while it is involved in 1/0
® Do I/O only into OS buffers

2/26/08 CSE 30341: Operating Systems Principles



