
page 32/26/08 CSE 30341: Operating Systems Principles

Module 3: Memory management

Module 1 and 2 dealt with processes, scheduling
and synchronization

Next two modules will deal with memory and
storage

Processes require data to perform useful work
 Stable storage (e.g. disk) is slow
 Transient storage (e.g. RAM memory) is faster

 multiple levels with different speeds

Goal is to get as much performance out of the
system by moving data between the levels



page 42/26/08 CSE 30341: Operating Systems Principles

Memory management problem

 Physical memory large contiguous address

 Need to load multiple programs into the address

 protect each process from others
– Require hardware support - managed by OS

 Ideally the presence of multiple programs is transparent to
the application

 Relocation - use logical rather than physical addresses
 Require hardware support - managed by OS

 Each program can access more than physical memory
 Swap contents to lower levels in memory hierarchy
 OS manages allocation of memory resources



page 52/26/08 CSE 30341: Operating Systems Principles

Chapter 8: Memory management

Program must be brought into memory and placed
within a process for it to be run

Memory hierarchy: Processor -> Registers, Cache
(L1, L2, L3 ..), Main memory, hard disk
 The closer to processor, the faster and expensive

User programs go through several steps before
being run



page 62/26/08 CSE 30341: Operating Systems Principles

Multistep Processing of a User Program



page 72/26/08 CSE 30341: Operating Systems Principles

Consider the helloworld.c

#include <stdio.h>
main() {

printf(“Hello world\n”);
}
 gcc -v helloworld.c (shows what really happens)
1. cc1 -v helloworld.c -dumpbase helloworld.c -auxbase

helloworld -version -o /tmp/cc9ORSny.s
2. as -V -Qy -o /tmp/ccoe1JH2.o /tmp/cc9ORSny.s
3. collect2 -m elf_i386 -dynamic-linker ld-linux.so.2 crt1.o crti.o

crtbegin.o /tmp/ccoe1JH2.o -lgcc -lgcc_s -lc crtend.o crtn.o

 ldd a.out
        libc.so.6 => /lib/tls/libc.so.6 (0x009aa000)
        /lib/ld-linux.so.2 (0x00990000)



page 82/26/08 CSE 30341: Operating Systems Principles

gcc -S helloworld.c to produce asm

 .file   "helloworld.c"
        .section        .rodata
.LC0:
        .string "Hello world\n"
        .text
.globl main
        .type   main, @function
main:
        pushl   %ebp
        [ ….. ]

   subl    $12, %esp
        pushl   $.LC0
        call    printf
        addl    $16, %esp
        leave
        ret



page 92/26/08 CSE 30341: Operating Systems Principles

Binding of Instructions and Data to Memory

Compile time:  If memory location known a priori,
absolute code can be generated; must recompile
code if starting location changes

Load time:  Must generate relocatable code if
memory location is not known at compile time

Execution time:  Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another.  Need hardware
support for address maps (e.g., base and limit
registers).

Address binding of instructions and data to memory addresses can
happen at three different stages



page 102/26/08 CSE 30341: Operating Systems Principles

Looking into the a.out file

nm a.out
0804958c A __bss_start
080482e4 t call_gmon_start
0804958c b completed.1
08049490 d __CTOR_END__
0804948c d __CTOR_LIST__
08049580 D __data_start
08049580 W data_start
08048430 t __do_global_ctors_aux
08048308 t __do_global_dtors_aux
08049584 D __dso_handle
…..



page 112/26/08 CSE 30341: Operating Systems Principles

Loading programs
 Dynamic loading

 Routine is not loaded until it is called
 Better memory-space utilization; unused routine is never loaded
 Useful when large amounts of code are needed to handle infrequently

occurring cases
 No special support from the operating system is required implemented

through program design
 Dynamic Linking

 Linking postponed until execution time
 Small piece of code, stub, used to locate the appropriate memory-

resident library routine
 Stub replaces itself with the address of the routine, and executes the

routine
 Operating system needed to check if routine is in processes’ memory

address
 Dynamic linking is particularly useful for libraries



page 122/26/08 CSE 30341: Operating Systems Principles

Logical vs. Physical Address Space

The concept of a logical address space that is bound
to a separate physical address space is central to
proper memory management
 Logical address – generated by the CPU; also referred to

as virtual address
 Physical address – address seen by the memory unit

Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme



page 132/26/08 CSE 30341: Operating Systems Principles

Memory-Management Unit (MMU)

Hardware device that maps virtual to physical
address

 In MMU scheme, the value in the relocation register
is added to every address generated by a user
process at the time it is sent to memory

The user program deals with logical addresses; it
never sees the real physical addresses



page 142/26/08 CSE 30341: Operating Systems Principles

Dynamic relocation using a relocation
register

MMU is a hardware component
OS manages the relocation register 
(e.g. modified while loading programs)



page 152/26/08 CSE 30341: Operating Systems Principles

Swapping
A process can be swapped temporarily out of

memory to a backing store, and then brought back
into memory for continued execution

Backing store – fast disk large enough to
accommodate copies of all memory images for all
users; must provide direct access to these memory
images

Roll out, roll in – swapping variant used for priority-
based scheduling algorithms; lower-priority process
is swapped out so higher-priority process can be
loaded and executed

Major part of swap time is transfer time; total
transfer time is directly proportional to the amount
of memory swapped

Modified versions of swapping are found on many
systems (i.e., UNIX, Linux, and Windows)



page 162/26/08 CSE 30341: Operating Systems Principles

Schematic View of Swapping



page 172/26/08 CSE 30341: Operating Systems Principles

Contiguous Allocation

Main memory usually into two partitions:
 Resident operating system, usually held in low memory

with interrupt vector
 User processes then held in high memory

Single-partition allocation
 Relocation-register scheme used to protect user processes

from each other, and from changing operating-system code
and data

 Relocation register contains value of smallest physical
address; limit register contains range of logical addresses –
each logical address must be less than the limit register



page 182/26/08 CSE 30341: Operating Systems Principles

A base and a limit register define a
logical address space



page 192/26/08 CSE 30341: Operating Systems Principles

HW address protection with base and
limit registers



page 202/26/08 CSE 30341: Operating Systems Principles

Contiguous Allocation (Cont.)

Multiple-partition allocation
 Hole – block of available memory; holes of various size

are scattered throughout memory
 When a process arrives, it is allocated memory from a

hole large enough to accommodate it
 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10



page 212/26/08 CSE 30341: Operating Systems Principles

Dynamic Storage-Allocation Problem

First-fit:  Allocate the first hole that is big enough
Best-fit:  Allocate the smallest hole that is big

enough; must search entire list, unless ordered by
size.  Produces the smallest leftover hole.

Worst-fit:  Allocate the largest hole; must also
search entire list.  Produces the largest leftover
hole.

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization



page 222/26/08 CSE 30341: Operating Systems Principles

Fragmentation

External Fragmentation – total memory space
exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together

in one large block
 Compaction is possible only if relocation is dynamic, and is

done at execution time
 I/O problem - I/O may be performed by a DMA controller

 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers


