
page 12/26/08 CSE 30341: Operating Systems Principles

Survey feedback

 “I definately agree that we need more code in
class. The idea of an operating system for a lot of
newbie cse's is what they witness for mac,
windows or linux. Very finite and tangible. With the
openness of your lectures we get an image of
something much more theoretical, so there is an
added challenge of connecting the concrete to
abstract. I feel that by presenting more (and more
'real', not just a loop segment would help put in
context) examples of code we could understand
OS's much more clearly and wholly.”

page 22/26/08 CSE 30341: Operating Systems Principles

What is an operating system?

page 32/26/08 CSE 30341: Operating Systems Principles

What is an operating systems?

Hardware (e.g. Core 2 Duo)

Firmware (e.g. EFI)

Operating System (e.g. Darwin)

Systems programs (e.g. Aqua)

Applications (e.g. Powerpoint)

page 42/26/08 CSE 30341: Operating Systems Principles

Mac OSX (from Wikipedia)

Our
focus

page 52/26/08 CSE 30341: Operating Systems Principles

Recap

Module 1:
 Process is an abstraction for a program in execution
 Threads is a way to assign multiple processors to a

program
 PCB internally represents a process to the OS
 System calls are a way for applications (user level) to

communicate and get services from OS (kernel level)
 Scheduling algorithm (OS service) decides which thread

to run and for how long

page 62/26/08 CSE 30341: Operating Systems Principles

Module 2

Challenge: Multiple threads running inside a
process can cause race conditions for some
applications
 Threads that did not share data were fine
 Threads that shared data can give unpredictable results

 One solution is to force each thread to behave in a
predictable fashion - significant slowdown because you
cannot use unexpected slack (extra CPU)

 Another solution is to force some partial order which is
flexible enough and yet gives you good performance

– Notion of conflict serializability

page 72/26/08 CSE 30341: Operating Systems Principles

Module 2: Critical sections

We defined notions of critical sections - to be used
by the programmer.
 need hardware support (TestandSet, Swap)
 it is sufficiently important that you get OS support

 With OS support, you can implement block vs spinlock

The whole module is concerned with the problem
faced by application program that exploit a feature
provided by the OS (threads) and the solutions. A
bit of the solution involves the Operating System.
Some of the other services that could be provided
by the OS (deadlock prevention/detection) is too
hard that no OS actually implements it

page 82/26/08 CSE 30341: Operating Systems Principles

Kernel mutex lock

 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);

#define __mutex_fastpath_lock(v, fail_fn)
do {
 unsigned long dummy;

 typecheck(atomic_t *, v);
 typecheck_fn(void (*)(atomic_t *), fail_fn);

 __asm__ __volatile__(
 LOCK_PREFIX " decl (%%rdi) \n"
 " jns 1f \n"
 " call "#fail_fn" \n"
 "1:"

 :"=D" (dummy)
 : "D" (v)
 : "rax", "rsi", "rdx", "rcx",
 "r8", "r9", "r10", "r11", "memory");
} while (0)

page 92/26/08 CSE 30341: Operating Systems Principles

Review

Critical section problem: Primarily a problem for
threaded application that share some data. There
is a need to ensure that only one thread gets to be
inside the critical section. There is a need to be fair

Semaphore, monitors are good programming
abstraction

Typical problem with threaded, shared data
 Bounded buffer
 Reader-writer: More than one reader inside CS
 Dining philosophers: solutions dead-lock prone

page 102/26/08 CSE 30341: Operating Systems Principles

Atomic transactions

Notions of Databases
 Transaction, commit, abort, rollback/roll forward, logs
 Serializability, conflict serializability

Deadlocks:
 A phenomenon faced by applications that used multiple

mutually exclusive resources
 OS can prevent deadlocks during allocation or detect

deadlocks after they have happened
 Applications can use these techniques while requesting

locks
 Most current OS’s do not do any of them

page 112/26/08 CSE 30341: Operating Systems Principles

Survey concern

 “Programming examples would be good for help in
identifying critical sections for multithreaded
processes, and how to handle them”

 Identifying critical sections requires a deep
understanding of your program. The finer grain you
have, the more performance you achieve
 Steps: Identify all shared variables

 Lock all accesses to them
 Deeply understand the program and only lock accesses

that are likely to cause a problem
 Miss a variable that should’ve been protected - tragedy

page 122/26/08 CSE 30341: Operating Systems Principles

Code example

Func()
{

for (int I=start_x; I < end_x; I++)
for (int j=start_y; j < end_y; j++)

matrix[I][j]=10;
}

thread_create func() with start_x, end_x, start_y,
end_y equalling (0,10,0,10), (11,20,11,20)

might not require locks

