-| Survey feedback

» “| definately agree that we need more code in
class. The idea of an operating system for a lot of
newbie cse's is what they witness for mac,
windows or linux. Very finite and tangible. With the
openness of your lectures we get an image of
something much more theoretical, so there is an
added challenge of connecting the concrete to
abstract. | feel that by presenting more (and more
'real’, not just a loop segment would help put in
context) examples of code we could understand

OS's much more clearly and wholly.”

2/26/08 CSE 30341: Operating Systems Principles page 1

g system?

What is an operat

F'HH ETUP
POWER
o ~

® Grab File Edit Capture Window Help O & a @ B ™ 2 <> 4 E=us. (<0 (Charged) 14:05:28 Surendar Chandra Q

iTunes

Search iTunes Store

uwﬁ;_ [] A poscasis tion > CSE30341-5 8. Operating Systems Princ [surendar@n.edu |
CSE 30341 - Spring 2008: Operating Systems Principles (HD) -
Surendar Chandra | wessiTE 3|

Catogory: Educaton | REPORT A ®|
Language: English [TELLAFRIEND ®|

= TV Shows
§ Podcasts
(] Audiobooks
) iPod Games
'§ Radio

= Free | SUBSCRIBE
L\ Ringtones
STORE
"W Shopping Cart
[# Purchased
[# Purchased on Surendar Chandra's iPh.
SHARED
cott Christley's Music PODCAST DESCRIPTION
V¥ PLAYLISTS Course material from CSE 30341: Operating Systems - Spring 2008 offering from the University of Notre Dame.
Party Shuffle
¥ [Odyssey =
CUSTOMER REVIEWS -
[#91-re8
a
[# 2 - hip hop
- 1 15: Deadlocks (cont) (... [cean 49:44 Surendar Chandra 2/20/08 Chapter 7.6 (deadlock detection), 7.7 (d... Free (GELEPISODE 2
(80 iTunes 2 15: Deadlocks (cont) (. 0:01 Surendar Chandra 2/20/08 Chapter 7.6 (deadlock detection), 7.7 (dea Free (GELEPISODE
[8 Tunes Plus 3 14: Deadlocks (cont) (. 50:00 Surendar Chandra 2/18/08 Chapter 7.2 (deadlock characterization)... Free (GEILEPISODE
[# Kumar 4 14: Deadlocks (cont) 0:03 Surendar Chandra 2/18/08 Chapter 7.2 (deadlock characterization), 7. Free (GELEPISODE
[& mp3 5 13: Deadlocks (slides) 0:02 Surendar Chandra 2/15/08 Deadlock Prevention (Cont.) Free (GELEPISODE
B Music Videos 6 13: Deadlocks (HD vid 49:56 Surendar Chandra 2/15/08 Deadlock Prevention (Cont.) Free (GELEPISODE
[#) My Top Rated 7 |1z 50:04 Surendar Chandra 2/13/08 Chapter 6.9 (Atomic transactions) Free (GELEPISODE
e 8 12 0:01 Surendar Chandra 2/13/08 Chapter 6.9 (Atomic transactions) Free (GELEPISODE
8 Today 9 11: Process synchroni. 40:32 Surendar Chandra 2/11/08 Chapter 6.5 (Semaphore), 6.7 (monitor) Free (GET EPISODE
[8 unplayed 10 11: Process sychroniz 0:01 Surendar Chandra 2/11/08 Chapter 6.5 (Semaphore), 6.7 (monitor) Free (GELEPISODE
[3 My radio 11 10: Process synchroni 49:41 Surendar Chandra 2/8/08 6.3 (Peterson's solution), 6.4 (Hardware... Free (GELEPISODE
[Norma 12 10: Process sychroniz... 0:02 Surendar Chandra 2/8/08 6.3 (Peterson's solution), 6.4 (Hardware), C... Free (GELEPISODE
3 Surendar Chandra’s Playlist 13 Home work project #2 Surendar Chandra 2/6/08 Free (GELEPISODE
s 14 Home work assignme.. Surendar Chandra 2/6/08 Free (GELEPISODE
4] Syrupy 15 9: Process sychroniza. 48:14 Surendar Chandra 2/6/08 Chapter 6 Free (GELEPISODE
16 9 Process sychronizat 0:02 Surendar Chandra 2/6/08 Chapter 6 Free (GELEPISODE
17 8: CPU scheduling (co. 49:25 Surendar Chandra 2/4/08 Chapter 5.3 (Scheduling algorithms), C. Free (GEI EPISODE
= 18 8: CPU scheduling (co 0:03 Surendar Chandra 2/4/08 Chapter 5.3 (Scheduling algorithms), Chap... Free (GELEPISODE
19 7: CPU scheduling (sli. 0:01 Surendar Chandra 2/1/08 Chapter 5 .1 (basics), 5.2 (criteria), 5.3 (Sc. Free (GELEPISODE
N 20 7:CPU scheduling (H. 49:49 Surendar Chandra 2/1/08 Chapter 5 .1 (basics), 5.2 (criteria), 5.3 (. Free (GELEPISODE .
21 Exam 01 Surendar Chandra__ 1/30/08 Free (GET EPISODE v
+ | X% | S | & | 2

bug-animated.gi

BSOS RGO el e o s

What is an operating systems?

Applications (e.g. Powerpoint)

Systems programs (e.g. Aqua)

Operating System (e.g. Darwin)

Firmware (e.g. EFI)

Hardware (e.g. Core 2 Duo)

2/26/08 CSE 30341: Operating Systems Principles

Mac OSX (from Wikipedia)

API

Application services

(Guarz)(openci)(Pinicore) (-

i Core services

Core Core foundation non-GUI API...
Core OS ("Darwin")

System utilities

Kernel ("xnu")

File systems

Networking NKE
(POSIX

(10 Kit

2/26/08 CSE 30341: Operating Systems Principles

» Module 1:

B Process is an abstraction for a program in execution

B Threads is a way to assign multiple processors to a
program

B PCB internally represents a process to the OS

B System calls are a way for applications (user level) to
communicate and get services from OS (kernel level)

B Scheduling algorithm (OS service) decides which thread
to run and for how long

2/26/08 CSE 30341: Operating Systems Principles page 5

Module 2

» Challenge: Multiple threads running inside a
process can cause race conditions for some
applications

B Threads that did not share data were fine

B Threads that shared data can give unpredictable results

® One solution is to force each thread to behave in a
predictable fashion - significant slowdown because you
cannot use unexpected slack (extra CPU)

® Another solution is to force some partial order which is
flexible enough and yet gives you good performance

— Notion of conflict serializability

2/26/08 CSE 30341: Operating Systems Principles page 6

-| Module 2: Critical sections

» We defined notions of critical sections - to be used
by the programmer.
B need hardware support (TestandSet, Swap)

| it is sufficiently important that you get OS support
® With OS support, you can implement block vs spinlock

» The whole module is concerned with the problem
faced by application program that exploit a feature
provided by the OS (threads) and the solutions. A
bit of the solution involves the Operating System.
Some of the other services that could be provided

by the OS (deadlock prevention/detection) is too

hard that no OS actually implements it

2/26/08 CSE 30341: Operating Systems Principles page 7

Kernel mutex lock

___mutex_fastpath_lock(&lock->count, mutex_lock_slowpath);

#define __mutex_fastpath_lock(v, fail_fn)
do {
unsigned long dummy;

typecheck(atomic_t *, v);
typecheck_fn(void (*)(atomic_t *), fail_fn);

__asm_____ volatile__(

LOCK_PREFIX" decl (%%rdi) \n"
" jns 1f \n"
" call "#fail_fn" \n"
nq.m

"=D" (dummy)

:"D" (v)

: "rax”, "rsi", "rdx", "rcx",

"r8"’ Ilrgll, "r1 O"’ "r1 1"’ Ilmemory");
} while (0)

2/26/08 CSE 30341: Operating Systems Principles page 8

» Critical section problem: Primarily a problem for
threaded application that share some data. There
IS a need to ensure that only one thread gets to be
inside the critical section. There is a need to be fair

» Semaphore, monitors are good programming
abstraction

» Typical problem with threaded, shared data
B Bounded buffer

B Reader-writer: More than one reader inside CS
B Dining philosophers: solutions dead-lock prone

I 2/26/08 CSE 30341: Operating Systems Principles page 9

-| Atomic transactions

» Notions of Databases
B Transaction, commit, abort, rollback/roll forward, logs
B Serializability, conflict serializability

» Deadlocks:

B A phenomenon faced by applications that used multiple
mutually exclusive resources

B OS can prevent deadlocks during allocation or detect
deadlocks after they have happened

® Applications can use these techniques while requesting
locks

B Most current OS’s do not do any of them

2/26/08 CSE 30341: Operating Systems Principles page 10

-| Survey concern

» “Programming examples would be good for help in
identifying critical sections for multithreaded
processes, and how to handle them”

» ldentifying critical sections requires a deep
understanding of your program. The finer grain you
have, the more performance you achieve

m Steps: Identify all shared variables
® Lock all accesses to them

B Deeply understand the program and only lock accesses
that are likely to cause a problem

® Miss a variable that should've been protected - tragedy

I 2/26/08 CSE 30341: Operating Systems Principles page 11

-| Code example

Func()

{
for (int I=start_x; | < end_x; [++)
for (int j=start_y;] < end_vy; j++)
matrix[l] [j1=10;

thread create func() with start_x, end_x, start_y,
end_y equalling (0,10,0,10), (11,20,11,20)

might not require locks

2/26/08 CSE 30341: Operating Systems Principles page 12

