
page 12/12/08 CSE 30341: Operating Systems Principles

Synchronization Examples

Solaris
Windows XP
Linux
Pthreads

page 22/12/08 CSE 30341: Operating Systems Principles

Solaris Synchronization

 Implements a variety of locks to support
multitasking, multithreading (including real-time
threads), and multiprocessing

Uses adaptive mutexes for efficiency when
protecting data from short code segments
 Multiprocess machine, spin or block

Uses condition variables and readers-writers locks
when longer sections of code need access to data

Uses turnstiles to order the list of threads waiting
to acquire either an adaptive mutex or reader-writer
lock

page 32/12/08 CSE 30341: Operating Systems Principles

Windows XP Synchronization

Uses interrupt masks to protect access to global
resources on uniprocessor systems

Uses spinlocks on multiprocessor systems
Also provides dispatcher objects which may act as

either mutexes and semaphores
Dispatcher objects may also provide events

 An event acts much like a condition variable

page 42/12/08 CSE 30341: Operating Systems Principles

Linux Synchronization

Linux:
 disables interrupts to implement short critical sections

Linux provides:
 semaphores
 spin locks

page 52/12/08 CSE 30341: Operating Systems Principles

Pthreads Synchronization

Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variables

Non-portable extensions include:
 read-write locks
 spin locks

page 62/12/08 CSE 30341: Operating Systems Principles

6.9: Atomic Transactions

 Introduce notions of databases into operating
systems
 Challenge is that some of these operations are “heavy”

and not necessarily fast

Transaction:
 A collection of operations that performs a single logical

function. For example, changing the state and moving the
process from waiting to ready state is one transaction

 Transactions are atomic with all or nothing semantics
 Committed transactions means, all the operations went

through
 Aborted transactions means, none of them went through
 You cannot be in a middle state, e.g., changed state,

removed it from waiting state but didn’t add to ready state
 When a transaction aborts, we roll back

page 72/12/08 CSE 30341: Operating Systems Principles

Storage states

Storage to implement transactions:
 Volatile storage: Does not survive system crash
 Nonvolatile storage: Survives system crashes
 Stable storage: Information is “never” lost. Uses

nonvolatile storage and replication

Log-based recovery:
 Write-ahead logging, where we write all operations into a

log in stable storage
 <transaction name, data item name, old value, new value>

 Transaction is made up of
 <Ti, starts> set of transaction logs <Ti, commit>
 If both starts and commit is there, then the transaction is

committed. Else, it is rolled back
 Logs are idempotent, you can apply it again and again in

the same order without side effects

page 82/12/08 CSE 30341: Operating Systems Principles

Checkpoints

Logs keep growing. After every failure, we’d have
to go back and replay the log. This can be time
consuming.

Checkpoint frequently
 Output all log records currently in volatile storage onto

stable storage
 Output all modified data residing in volatile storage to the

stable storage
 Output a log record <checkpoint> into stable storage

On failure, search backwards till we hit the first
checkpoint. The first transaction start from the
checkpoint (going back) is the start of replay

page 92/12/08 CSE 30341: Operating Systems Principles

Serializability

Transactions can be concurrent. Such concurrency
may cause problems depending on the interleaving
of the transactions. We introduce stricter notions of
this phenomenon in order to predict system
behavior

Schedule is an execution sequence
Serial schedule: Schedule where two concurrent

transactions follow one after the other
 For two transactions T1, T2: serial schedule is T1 then T2

or T2 then T1. For n transactions, we have n! choices, all
of which is valid

 Serial schedule cannot fully utilize the system resources
and so we want to relax the schedule: non-serial
schedule

page 102/12/08 CSE 30341: Operating Systems Principles

Conflict

We define a schedule to be in conflict if they both
operate on the same data item and one of the
operations is a write

 If there is no conflict, the schedule can be
swapped.

 If after non-conflicting swaps we reach a serial
schedule, then that schedule is called conflict
serializable

page 112/12/08 CSE 30341: Operating Systems Principles

Read(A)
Write(A)
Read(B)
Write(B)

read(A)
write(A)
read(B)
write(B)

Serial schedule

Read(A)
Write(A)

read(A)
write(A)

Read(B)
Write(B)

read(B)
write(B)

Conflict serializable
schedule

page 122/12/08 CSE 30341: Operating Systems Principles

Locking protocol to enforce order

Shared: Transaction can read but not write
Exclusive: Transaction can read and write

Two phase protocol to ensure serializability:
 Growing phase - transaction can obtain but not release

locks
 Shrinking phase - transaction can release lock but not

acquire new ones

 Ensures conflict serializability but is not free from
deadlocks

page 132/12/08 CSE 30341: Operating Systems Principles

Timestamp-based Protocols

Timestamp transactions: Can be real wall clock
time or logical clock

The timestamp determines the serializability order
For each data item (Q), associate two timestamps

 W-timestamp denotes largest timestamp of any
transaction that successfully executed write(Q).

 R-timestamp for read(Q)
Suppose Ti issues read(Q):

 If TS(Ti) < W-timestamp(Q), rollback Ti
 If TS(Ti) >= W-timestamp(Q), execute Ti, R-timestamp =

maximum (R-timestamp(Q) and TS(Ti))
Suppose Ti issues write(Q):

 If TS(Ti) < R-timestamp(Q), rollback Ti
 If TS(Ti) < W-timestamp(Q), rollback Ti
 Execute write

page 142/12/08 CSE 30341: Operating Systems Principles

Schedule possible under Timestamp

Read(B)
read(B)
write(B)

Read(A)
read(A)
write(A)

