
page 12/8/08 CSE 30341: Operating Systems Principles

Semaphore synchronization primitive

TestAndSet are hard to program for end users
 Introduce a simple function called semaphore:

 Semaphore is an integer, S
 Only legal operations on S are:

 Wait() [atomic] - if S > 0, decrement S else loop
 Signal() [atomic] - increment S

 wait (S) {
 while S <= 0

 ; // no-op
 S--;
 }
 signal (S) {
 S++;
 }
 Counting (S: is unrestricted), binary (mutex lock) (S: 0, 1)

page 22/8/08 CSE 30341: Operating Systems Principles

Semaphore usage example

Assume synch is initialized to 0
 P2:

Wait(synch);
Statements2;

 P1:
Statements1;
signal(synch);

page 32/8/08 CSE 30341: Operating Systems Principles

Semaphore Implementation

Must guarantee that no two processes can
execute wait () and signal () on the same
semaphore at the same time

Thus, implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section.
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution.

page 42/8/08 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting
With each semaphore there is an associated

waiting queue. Each entry in a waiting queue has
two data items:
 value (of type integer)
 pointer to next record in the list

Two operations:
 block – place the process invoking the operation on the

appropriate waiting queue
 wakeup – remove one of processes in the waiting queue

and place it in the ready queue

page 52/8/08 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting (Cont.)
 wait (S) {

 value--;
 if (value < 0) {

 add this process to waiting queue
 block(); }

 }

 Signal (S) {
 value++;
 if (value <= 0) {

 remove a process P from the waiting queue
 wakeup(P); }

 }

page 62/8/08 CSE 30341: Operating Systems Principles

Condition Variables

condition x, y;

Two operations on a condition variable:
 x.wait () – a process that invokes the operation is
 suspended.
 x.signal () – resumes one of processes (if any) that
 invoked x.wait ()

page 72/8/08 CSE 30341: Operating Systems Principles

Monitors

 A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

 Only one process may be active within the monitor at a time
monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

…
procedure Pn (…) {……}

 Initialization code (….) { … }
…

}
}

 In Java, declaring a method synchronized to get monitor like
behavior
 What happens to shared variables which are not protected by

this monitor?

page 82/8/08 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers using Monitors

monitor DP
 {

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
}

 void putdown (int i) {
 state[i] = THINKING;

 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);

 }

page 92/8/08 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers (cont)

void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;

 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

page 102/8/08 CSE 30341: Operating Systems Principles

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

 Let S and Q be two semaphores initialized to 1
P0 P1

 wait (S); wait (Q);
 wait (Q); wait (S);

. .

. .

. .
 signal (S); signal (Q);
 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

page 112/8/08 CSE 30341: Operating Systems Principles

Synchronization Examples

Solaris
Windows XP
Linux
Pthreads

page 122/8/08 CSE 30341: Operating Systems Principles

Solaris Synchronization

 Implements a variety of locks to support
multitasking, multithreading (including real-time
threads), and multiprocessing

Uses adaptive mutexes for efficiency when
protecting data from short code segments

Uses condition variables and readers-writers locks
when longer sections of code need access to data

Uses turnstiles to order the list of threads waiting
to acquire either an adaptive mutex or reader-writer
lock

page 132/8/08 CSE 30341: Operating Systems Principles

Windows XP Synchronization

Uses interrupt masks to protect access to global
resources on uniprocessor systems

Uses spinlocks on multiprocessor systems
Also provides dispatcher objects which may act as

either mutexes and semaphores
Dispatcher objects may also provide events

 An event acts much like a condition variable

page 142/8/08 CSE 30341: Operating Systems Principles

Linux Synchronization

Linux:
 disables interrupts to implement short critical sections

Linux provides:
 semaphores
 spin locks

page 152/8/08 CSE 30341: Operating Systems Principles

Pthreads Synchronization

Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variables

Non-portable extensions include:
 read-write locks
 spin locks

