
CSE 30341: Home Work Project 2

Assigned: Feb 7

Due: Mon, Feb 23, 10:40AM

Late submissions will not be accepted

Group effort

In this project, we will parallelize a matrix program using pthreads library. Consider a C

program matrix.c (available online on expsys-svr4.cse.nd.edu at

/home/cse30341-sp07/OS/hwp02/). This program performs an operation that is very similar to

matrix multiplication: the key difference is that the values are updated in place.

1. for (row = 0; row < INDEX; row++)

2. for (col = 0; col < INDEX; col++) {

3. result = 0;

4. for (cur = 0; cur < INDEX; cur++)

5. result += (*mat1)[row][cur] * (*mat2)[cur][col];

6. (*mat2) [row][col] = result;

7. }

Parallize this program using pthreads library (to run faster on multiprocessor machines). You

will run your experiments in expsys-svr4.cse.nd.edu machine. You will report the time it took to

run the program using 1 thread (as assigned), 2, 3, 4, 5 and 6 threads. Repeat your

experiments to draw statistically valid conclusions (make sure that two of you are not running

experiments at the same time). You should check to make sure that the matrix operation

results are the same (between the single threaded program and your multi-threaded program

i.e, compare the execution of correctly executing programs). You could save the output from

your program using ‘a.out > original.txt’. You can compare two outputs using the diff command

as ‘diff original.txt mine.txt’.

You may turn in your program and any raw data that you deem to be of interest in the AFS

drop box. These files may be used to verify your graphs. However, for the most part, we will

only grade your project based on the written report. Turn in a hard copy of the report. Feel free

to discuss your results with your colleagues.

Helpful pthreads calls:

1. pthread_create()

2. pthread_join ()

3. Mutex

a. pthread_mutex_init();

b. pthread_mutex_destroy();

c. pthread_mutex_lock();

d. pthread_mutex_unlock();

e. pthread_mutex_trylock();

4. Semaphores:

a. sem_init();

b. sem_destroy();

c. sem_post();

d. sem_wait();

e. sem_trywait();

f. sem_getvalue();

Useful tutorials:

• http://www.ecet.vtc.edu/~pchapin/pthreadTutorial.pdf

• http://www.humbug.org.au/talks/pthreads/pthreads.html

