

Shortest-Job-First (SJR) Scheduling

- Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time
- Two schemes:
 - nonpreemptive once CPU given to the process, it cannot be preempted until completes its CPU burst
 - preemptive if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is known as the Shortest-Remaining-Time-First (SRTF)
- ▶ SJF is optimal gives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF

<u>Process</u>	<u> Arrival Time</u>	Burst Time
P_{1}	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{_{4}}$	5.0	4

SJF (non-preemptive)

v Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Preemptive SJF

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P_{1}	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle 4}$	5.0	4

SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 = 3

Determining Length of Next CPU Burst

- Can only estimate the length
- Can be done by using the length of previous CPU bursts, using exponential averaging
- 1. t_n = actual length of n^{th} CPU burst
- 2. τ_{n+1} = predicted value for the next CPU burst
- 3. α , $0 \le \alpha \le 1$

4. Define:
$$\tau_{n=1} = \alpha t_n + (1 - \alpha) \tau_n$$
.

Prediction of the Length of the Next CPU Burst

CPU burst (t_i) 6 4 6 4 13 13 13 ...

"guess" (τ_i) 10 8 6 6 5 9 11 12 ...

Examples of Exponential Averaging

$$\alpha = 0$$

$$\lambda \quad \tau_{n+1} = \tau_n$$

- λ Recent history does not count
- $\alpha = 1$

$$\lambda \quad \tau_{n+1} = \alpha t_n$$

- λ Only the actual last CPU burst counts
- v If we expand the formula, we get:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\alpha t_n - 1 + \dots$$

$$+ (1 - \alpha)^j \alpha t_{n-j} + \dots$$

$$+ (1 - \alpha)^{n+1} \tau_0$$

Since both α and (1 - α) are less than or equal to 1, each successive term has less weight than its predecessor

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - nonpreemptive
- SJF is a priority scheduling where priority is the predicted next CPU burst time
- ▶ Problem = Starvation low priority processes may never execute
- Solution = Aging as time progresses increase the priority of the process

Round Robin (RR)

- ▶ Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Performance
 - q large ⇒ FIFO
 - q small ⇒ q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 20

<u>Process</u>	Burst Time
P_1	53
P_2	17
P_3	68
P_4	24

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

process time = 10	quantum context switches
	12 0
0	10
	6 1
0 6	10
	1 9
0 1 2 3 4 5 6 7	8 9 10

Turnaround Time Varies With The Time Quantum

process	time
P_1	6
P_2	3
P_3	1
P_4	7

Multilevel Queue

- Ready queue is partitioned into separate queues: foreground (interactive) background (batch)
- Each queue has its own scheduling algorithm
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

- \mathbb{Q}_0 RR with time quantum 8 milliseconds
- \mathbb{Q}_1 RR time quantum 16 milliseconds
- \mathbb{Q}_2 FCFS

Scheduling

- A new job enters queue Q_0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1 .
- At Q_1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q_2 .

Multilevel Feedback Queues

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Load sharing
 - Preserve locality of data and state
- Asymmetric multiprocessing only one processor accesses the operating system data structures, alleviating the need for kernel data sharing among processors
- Some cooperative processes like to run with n processors or none at all
 - Gang scheduling to assign a group of processors

Real-Time Scheduling

- ▶ Hard real-time systems required to complete a critical task within a guaranteed amount of time
- Soft real-time computing requires that critical processes receive priority over less fortunate ones

Thread Scheduling

▶ Local Scheduling – How the threads library decides which thread to put onto an available light weight process (LWP) (kernel thread)

 Global Scheduling – How the kernel decides which kernel thread to run next

Operating System Examples

- Windows XP scheduling
- Linux scheduling

Windows XP Priorities

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

Linux Scheduling

- ▶ Two algorithms: time-sharing and real-time
- Time-sharing
 - Prioritized credit-based process with most credits is scheduled next
 - Credit subtracted when timer interrupt occurs
 - When credit = 0, another process chosen
 - When all processes have credit = 0, recrediting occurs
 - Based on factors including priority and history
- Real-time
 - Soft real-time
 - Posix.1b compliant two classes
 - FCFS and RR
 - Highest priority process always runs first

The Relationship Between Priorities and Time-slice length

numeric priority	relative priority		time quantum
0	highest		200 ms
•		real-time	
•		tasks	
•		ιασκο	
99			
100			
•		other	
•		tasks	
•		lasks	
140	lowest		10 ms

