
page 11/29/07 CSE 30341: Operating Systems Principles

Some clarifications about OS

OS role:
 Properly functioning OS ensures that protection between

processes are not breached. OS makes no such promise
for threads within a single process.
 Two processes cannot share memory unless explicitly

allowed. Two threads can trample on the local memory.
Sometimes (not always) you get segmentation violation.
Regardless, you cannot rely on the OS giving you
segmentation fault all the time.

void *ptr = random(2^32);

*ptr=1;

The original slides were copyright Silberschatz, Galvin and Gagne, 2005



page 21/29/07 CSE 30341: Operating Systems Principles

Threading Issues

1. Semantics of fork() and exec() system calls
 Does fork() duplicate only the calling thread or all

threads?

2. Thread cancellation
 Asynchronous cancellation terminates the target thread

immediately

 Deferred cancellation allows the target thread to
periodically check if it should be cancelled



page 31/29/07 CSE 30341: Operating Systems Principles

3: Signal Handling

Signals are used in UNIX systems to notify a
process that a particular event has occurred
 Ctrl-C sends SIGINT (Interrupt)

 float x=1/0; sends SIGFPE

A signal handler is used to process signals
 Signal is generated by particular event

 Signal is delivered to a process

 Signal is handled

Options:
 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the
process



page 41/29/07 CSE 30341: Operating Systems Principles

Thread Pools

Create a number of threads in a pool where
they await work

Advantages:
 Usually slightly faster to service a request with an

existing thread than create a new thread

 Allows the number of threads in the application(s) to
be bound to the size of the pool



page 51/29/07 CSE 30341: Operating Systems Principles

Thread Specific Data

Allows each thread to have its own copy of
data

Useful when you do not have control over
the thread creation process (i.e., when
using a thread pool)



page 61/29/07 CSE 30341: Operating Systems Principles

Scheduler Activations

Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

This communication allows an application to
maintain the correct number kernel threads



page 71/29/07 CSE 30341: Operating Systems Principles

Windows XP Threads

 Implements the one-to-one mapping

Each thread contains
 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

The register set, stacks, and private storage area
are known as the context of the threads

The primary data structures of a thread include:
 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)



page 81/29/07 CSE 30341: Operating Systems Principles

Linux Threads

Linux refers to them as tasks rather than threads

Thread creation is done through clone() system call

clone() allows a child task to share the address
space of the parent task (process)



page 91/29/07 CSE 30341: Operating Systems Principles

Java Threads

Java threads are managed by the JVM

Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface



page 101/29/07 CSE 30341: Operating Systems Principles

Summary

Processes are programs in execution
 PCB encapsulates all data for processes

 Processes go through many queues depending on the
state, RUN, Ready or Wait.

 Processes share with other processes using shared
memory or message passing; by default processes are
isolated

Threads are used to assign multiple CPUs to a
process
 Maps m user level threads to n kernel level threads


