
page 15/1/07 CSE 30341: Operating Systems Principles

Components of a Linux System

Linux uses many tools developed as part of
Berkeley’s BSD operating system, MIT’s X
Window System, GNOME/KDE Window manager
and the Free Software Foundation's GNU project

page 25/1/07 CSE 30341: Operating Systems Principles

Processes and Threads

Linux uses the same internal representation for
processes and threads; a thread is simply a new
process that happens to share the same address
space as its parent

A distinction is only made when a new thread is
created by the clone system call
 fork creates a new process with its own entirely new

process context

 clone creates a new process with its own identity, but
that is allowed to share the data structures of its parent

Using clone gives an application fine-grained
control over exactly what is shared between two
threads

page 35/1/07 CSE 30341: Operating Systems Principles

priority
2

credits
 : credits +=

Process Scheduling

 Linux uses two process-scheduling algorithms:
 A time-sharing algorithm for fair preemptive scheduling between

multiple processes

 A real-time algorithm for tasks where absolute priorities are
more important than fairness

 A process’s scheduling class defines which algorithm to apply

 For time-sharing processes, Linux uses a prioritized, credit
based algorithm
 The crediting rule

factors in both the process’s history and its priority

 This crediting system automatically prioritizes interactive or I/O-
bound processes

page 45/1/07 CSE 30341: Operating Systems Principles

Process Scheduling (Cont.)

Linux implements the FIFO and round-robin real-
time scheduling classes; in both cases, each
process has a priority in addition to its scheduling
class
 The scheduler runs the process with the highest priority;

for equal-priority processes, it runs the process waiting
the longest

 FIFO processes continue to run until they either exit or
block

 A round-robin process will be preempted after a while
and moved to the end of the scheduling queue, so that
round-robing processes of equal priority automatically
time-share between themselves

page 55/1/07 CSE 30341: Operating Systems Principles

Symmetric Multiprocessing

Linux 2.0 was the first Linux kernel to support SMP
hardware; separate processes or threads can
execute in parallel on separate processors

To preserve the kernel’s nonpreemptible
synchronization requirements, SMP imposes the
restriction, via a single kernel spinlock, that only
one processor at a time may execute kernel-mode
code

page 65/1/07 CSE 30341: Operating Systems Principles

Memory Management

Linux’s physical memory-management system
deals with allocating and freeing pages, groups of
pages, and small blocks of memory

 It has additional mechanisms for handling virtual
memory, memory mapped into the address space
of running processes

Splits memory into 3 different zones due to
hardware characteristics

page 75/1/07 CSE 30341: Operating Systems Principles

Virtual Memory

The VM system maintains the address space
visible to each process: It creates pages of virtual
memory on demand, and manages the loading of
those pages from disk or their swapping back out
to disk as required

The VM manager maintains two separate views of
a process’s address space:
 A logical view describing instructions concerning the

layout of the address space
 The address space consists of a set of nonoverlapping

regions, each representing a continuous, page-aligned
subset of the address space

 A physical view of each address space which is stored in
the hardware page tables for the process

page 85/1/07 CSE 30341: Operating Systems Principles

Virtual Memory (Cont.)

Virtual memory regions are characterized by:
 The backing store, which describes from where the

pages for a region come; regions are usually backed by a
file or by nothing (demand-zero memory)

 The region’s reaction to writes (page sharing or copy-on-
write)

The kernel creates a new virtual address space
1. When a process runs a new program with the exec

system call

2. Upon creation of a new process by the fork system call

page 95/1/07 CSE 30341: Operating Systems Principles

Virtual Memory (Cont.)

On executing a new program, the process is given
a new, completely empty virtual-address space; the
program-loading routines populate the address
space with virtual-memory regions

Creating a new process with fork involves creating
a complete copy of the existing process’s virtual
address space
 The kernel copies the parent process’s VMA descriptors,

then creates a new set of page tables for the child

 The parent’s page tables are copied directly into the
child’s, with the reference count of each page covered
being incremented

 After the fork, the parent and child share the same
physical pages of memory in their address spaces

page 105/1/07 CSE 30341: Operating Systems Principles

Virtual Memory (Cont.)

The VM paging system relocates pages of memory
from physical memory out to disk when the
memory is needed for something else

The VM paging system can be divided into two
sections:
 The pageout-policy algorithm decides which pages to

write out to disk, and when

 The paging mechanism actually carries out the transfer,
and pages data back into physical memory as needed

page 115/1/07 CSE 30341: Operating Systems Principles

Virtual Memory (Cont.)

The Linux kernel reserves a constant, architecture-
dependent region of the virtual address space of
every process for its own internal use

This kernel virtual-memory area contains two
regions:
 A static area that contains page table references to every

available physical page of memory in the system, so that
there is a simple translation from physical to virtual
addresses when running kernel code

 The reminder of the reserved section is not reserved for
any specific purpose; its page-table entries can be
modified to point to any other areas of memory

page 125/1/07 CSE 30341: Operating Systems Principles

Executing and Loading User Programs

 Linux maintains a table of functions for loading programs; it
gives each function the opportunity to try loading the given
file when an exec system call is made

 The registration of multiple loader routines allows Linux to
support both the ELF and a.out binary formats

 Initially, binary-file pages are mapped into virtual memory
 Only when a program tries to access a given page will a page

fault result in that page being loaded into physical memory

 An ELF-format binary file consists of a header followed by
several page-aligned sections
 The ELF loader works by reading the header and mapping the

sections of the file into separate regions of virtual memory

page 135/1/07 CSE 30341: Operating Systems Principles

Memory Layout for ELF Programs

page 145/1/07 CSE 30341: Operating Systems Principles

Static and Dynamic Linking

A program whose necessary library functions are
embedded directly in the program’s executable
binary file is statically linked to its libraries

The main disadvantage of static linkage is that
every program generated must contain copies of
exactly the same common system library functions

Dynamic linking is more efficient in terms of both
physical memory and disk-space usage because it
loads the system libraries into memory only once

page 155/1/07 CSE 30341: Operating Systems Principles

File Systems

To the user, Linux’s file system appears as a
hierarchical directory tree obeying UNIX semantics

 Internally, the kernel hides implementation details
and manages the multiple different file systems via
an abstraction layer, that is, the virtual file system
(VFS)

The Linux VFS is designed around object-oriented
principles and is composed of two components:
 A set of definitions that define what a file object is allowed

to look like
 The inode-object and the file-object structures represent

individual files

 the file system object represents an entire file system

 A layer of software to manipulate those objects

page 165/1/07 CSE 30341: Operating Systems Principles

The Linux Ext2fs File System

Ext2fs uses a mechanism similar to that of BSD
Fast File System (ffs) for locating data blocks
belonging to a specific file

The main differences between ext2fs and ffs
concern their disk allocation policies
 In ffs, the disk is allocated to files in blocks of 8Kb, with

blocks being subdivided into fragments of 1Kb to store
small files or partially filled blocks at the end of a file

 Ext2fs does not use fragments; it performs its allocations
in smaller units
 The default block size on ext2fs is 1Kb, although 2Kb and

4Kb blocks are also supported

 Ext2fs uses allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk
blocks as a single operation

page 175/1/07 CSE 30341: Operating Systems Principles

Ext2fs Block-Allocation Policies

page 185/1/07 CSE 30341: Operating Systems Principles

The Linux Proc File System

The proc file system does not store data, rather, its
contents are computed on demand according to
user file I/O requests

proc must implement a directory structure, and the
file contents within; it must then define a unique
and persistent inode number for each directory and
files it contains
 It uses this inode number to identify just what operation is

required when a user tries to read from a particular file
inode or perform a lookup in a particular directory inode

 When data is read from one of these files, proc collects
the appropriate information, formats it into text form and
places it into the requesting process’s read buffer

page 195/1/07 CSE 30341: Operating Systems Principles

Input and Output

The Linux device-oriented file system accesses
disk storage through two caches:
 Data is cached in the page cache, which is unified with

the virtual memory system

 Metadata is cached in the buffer cache, a separate cache
indexed by the physical disk block

Linux splits all devices into three classes:
 block devices allow random access to completely

independent, fixed size blocks of data

 character devices include most other devices; they don’t
need to support the functionality of regular files

 network devices are interfaced via the kernel’s
networking subsystem

page 205/1/07 CSE 30341: Operating Systems Principles

Block Devices

Provide the main interface to all disk devices in a
system

The block buffer cache serves two main purposes:
 it acts as a pool of buffers for active I/O

 it serves as a cache for completed I/O

The request manager manages the reading and
writing of buffer contents to and from a block
device driver

page 215/1/07 CSE 30341: Operating Systems Principles

Character Devices

A device driver which does not offer random
access to fixed blocks of data

A character device driver must register a set of
functions which implement the driver’s various file
I/O operations

The kernel performs almost no preprocessing of a
file read or write request to a character device, but
simply passes on the request to the device

The main exception to this rule is the special
subset of character device drivers which implement
terminal devices, for which the kernel maintains a
standard interface

page 225/1/07 CSE 30341: Operating Systems Principles

Passing Data Between Processes

The pipe mechanism allows a child process to
inherit a communication channel to its parent, data
written to one end of the pipe can be read a the
other

Shared memory offers an extremely fast way of
communicating; any data written by one process to
a shared memory region can be read immediately
by any other process that has mapped that region
into its address space

To obtain synchronization, however, shared
memory must be used in conjunction with another
Interprocess-communication mechanism

page 235/1/07 CSE 30341: Operating Systems Principles

Shared Memory Object

The shared-memory object acts as a backing store
for shared-memory regions in the same way as a
file can act as backing store for a memory-mapped
memory region

Shared-memory mappings direct page faults to
map in pages from a persistent shared-memory
object

Shared-memory objects remember their contents
even if no processes are currently mapping them
into virtual memory

page 245/1/07 CSE 30341: Operating Systems Principles

Security

The pluggable authentication modules (PAM)
system is available under Linux

PAM is based on a shared library that can be used
by any system component that needs to
authenticate users

Access control under UNIX systems, including
Linux, is performed through the use of unique
numeric identifiers (uid and gid)

Access control is performed by assigning objects a
protections mask, which specifies which access
modes—read, write, or execute—are to be granted
to processes with owner, group, or world access

