
page 14/30/07 CSE 30341: Operating Systems Principles

Data center server

One of the specification
is the size that server
will take in a rack. 1U is
the smallest size and
blade servers, which fit
one unit are all the rage

Dual (Quad Core Xeon,
2x4MB Cache, 2.66
GHz, 1333 MHz FSB),
16 GB memory,
2x73GB 15k rpm hard
disk - $10000

1 rack - 60 racks
 ($ 0.6 m)

page 24/30/07 CSE 30341: Operating Systems Principles

Servers

Mission critical systems
 Three tier systems - production, backup and test

 Virtual hosting to protect against interference with other
processes

 Data center support service level agreements (SLA) - OS
should be aware of these

 On demand computing

 Autonomic management

Each rack can consume 10 Kw
 Additional 10 Kw in cooling

 Data center can be powered exclusively by a 300 MW
power station.

page 34/30/07 CSE 30341: Operating Systems Principles

Hot topics

Hot research areas:
 Energy management for servers/laptops

 Virtual machine support for isolation (Java, Xen,
VMWare, Parallels, Wine etc.)

 Grid/cluster computing to harness lots of machines

 Autonomic OS/storage etc.

page 44/30/07 CSE 30341: Operating Systems Principles

Windows XP

32-bit preemptive multitasking operating
system for Intel microprocessors

Key goals for the system:
 portability
 security
 POSIX compliance
 multiprocessor support
 extensibility
 international support
 compatibility with MS-DOS and MS-Windows

applications.

Uses a micro-kernel architecture
Available in many variations (Pro, Home,

Media Center, X64, ..)

page 54/30/07 CSE 30341: Operating Systems Principles

Design Principles

Extensibility — layered architecture
 Executive, which runs in protected mode, provides the

basic system services

 On top of the executive, several server subsystems
operate in user mode

 Modular structure allows additional environmental
subsystems to be added without affecting the executive

Portability —XP can be moved from on hardware
architecture to another with relatively few changes
 Written in C and C++

 Processor-dependent code is isolated in a dynamic link
library (DLL) called the “hardware abstraction layer”
(HAL)

page 64/30/07 CSE 30341: Operating Systems Principles

Depiction of XP Architecture

page 74/30/07 CSE 30341: Operating Systems Principles

Foundation for the executive and the subsystems
Never paged out of memory; execution is never

preempted
Four main responsibilities:

 thread scheduling
 interrupt and exception handling
 low-level processor synchronization
 recovery after a power failure

Kernel is object-oriented, uses two sets of objects
 dispatcher objects control dispatching and

synchronization (events, mutants, mutexes,
semaphores, threads and timers)

 control objects (asynchronous procedure calls,
interrupts, power notify, power status, process and
profile objects)

System Components — Kernel

page 84/30/07 CSE 30341: Operating Systems Principles

Kernel — Process and Threads

The process has a virtual memory address space,
information (such as a base priority), and an affinity
for one or more processors

Threads are the unit of execution scheduled by the
kernel’s dispatcher

Each thread has its own state, including a priority,
processor affinity, and accounting information

A thread can be in one of six states: ready,
standby, running, waiting, transition, and
terminated

page 94/30/07 CSE 30341: Operating Systems Principles

Kernel — Scheduling

The dispatcher uses a 32-level priority scheme to
determine the order of thread execution
 Priorities are divided into two classes

 The real-time class contains threads with priorities ranging
from 16 to 31

 The variable class contains threads having priorities from 0
to 15

Characteristics of XP’s priority strategy
 Tends to give very good response times to interactive

threads that are using the mouse and windows

 Enables I/O-bound threads to keep the I/O devices busy

 Compute-bound threads soak up the spare CPU cycles in
the background

page 104/30/07 CSE 30341: Operating Systems Principles

Kernel — Scheduling (Cont.)

Scheduling can occur when a thread enters
the ready or wait state, when a thread
terminates, or when an application changes a
thread’s priority or processor affinity

Real-time threads are given preferential
access to the CPU; but XP does not guarantee
that a real-time thread will start to execute
within any particular time limit
 This is known as soft real-time

page 114/30/07 CSE 30341: Operating Systems Principles

Kernel — Trap Handling

The kernel provides trap handling when exceptions
and interrupts are generated by hardware of
software

Exceptions that cannot be handled by the trap
handler are handled by the kernel's exception
dispatcher

The interrupt dispatcher in the kernel handles
interrupts by calling either an interrupt service
routine (such as in a device driver) or an internal
kernel routine

The kernel uses spin locks that reside in global
memory to achieve multiprocessor mutual
exclusion

page 124/30/07 CSE 30341: Operating Systems Principles

Executive — Object Manager

XP uses objects for all its services and entities; the
object manger supervises the use of all the objects
 Generates an object handle

 Checks security

 Keeps track of which processes are using each object

Objects are manipulated by a standard set of
methods, namely create, open, close,
delete, query name, parse and security

page 134/30/07 CSE 30341: Operating Systems Principles

Executive — Naming Objects

The XP executive allows any object to be given a
name, which may be either permanent or
temporary

Object names are structured like file path names in
MS-DOS and UNIX

XP implements a symbolic link object, which is
similar to symbolic links in UNIX that allow multiple
nicknames or aliases to refer to the same file

A process gets an object handle by creating an
object by opening an existing one, by receiving a
duplicated handle from another process, or by
inheriting a handle from a parent process

Each object is protected by an access control list

page 144/30/07 CSE 30341: Operating Systems Principles

Executive — Virtual Memory Manager

The design of the VM manager assumes that the
underlying hardware supports virtual to physical
mapping a paging mechanism, transparent cache
coherence on multiprocessor systems, and virtual
addressing aliasing

The VM manager in XP uses a page-based
management scheme with a page size of 4 KB

The XP VM manager uses a two step process to
allocate memory
 The first step reserves a portion of the process’s address

space

 The second step commits the allocation by assigning
space in the 2000 paging file

page 154/30/07 CSE 30341: Operating Systems Principles

Virtual-Memory Layout

page 164/30/07 CSE 30341: Operating Systems Principles

Virtual Memory Manager (Cont.)

The virtual address translation in XP uses several
data structures
 Each process has a page directory that contains 1024

page directory entries of size 4 bytes
 Each page directory entry points to a page table which

contains 1024 page table entries (PTEs) of size 4 bytes
 Each PTE points to a 4 KB page frame in physical

memory

A 10-bit integer can represent all the values form 0
to 1023, therefore, can select any entry in the page
directory, or in a page table

This property is used when translating a virtual
address pointer to a bye address in physical
memory

A page can be in one of six states: valid, zeroed,
free standby, modified and bad

page 174/30/07 CSE 30341: Operating Systems Principles

Virtual-to-Physical Address Translation

10 bits for page directory entry, 20 bits for page
table entry, and 12 bits for byte offset in page

page 184/30/07 CSE 30341: Operating Systems Principles

Page File Page-Table Entry

5 bits for page protection, 20 bits for page frame address, 4
bits to select a paging file, and 3 bits that describe the
page state. V = 0

page 194/30/07 CSE 30341: Operating Systems Principles

Executive — Process Manager

Provides services for creating, deleting, and using
threads and processes.

 Issues such as parent/child relationships or
process hierarchies are left to the particular
environmental subsystem that owns the process.

page 204/30/07 CSE 30341: Operating Systems Principles

Executive — Local Procedure Call
Facility
The LPC passes requests and results between

client and server processes within a single
machine.

 In particular, it is used to request services from the
various XP subsystems.

When a LPC channel is created, one of three types
of message passing techniques must be specified.
 First type is suitable for small messages, up to 256 bytes;

port's message queue is used as intermediate storage,
and the messages are copied from one process to the
other.

 Second type avoids copying large messages by pointing
to a shared memory section object created for the
channel.

 Third method, called quick LPC was used by graphical
display portions of the Win32 subsystem.

page 214/30/07 CSE 30341: Operating Systems Principles

Executive — I/O Manager

The I/O manager is responsible for
 file systems
 cache management
 device drivers
 network drivers

Keeps track of which installable file systems are
loaded, and manages buffers for I/O requests

Works with VM Manager to provide memory-
mapped file I/O

Controls the XP cache manager, which handles
caching for the entire I/O system

Supports both synchronous and asynchronous
operations, provides time outs for drivers, and
has mechanisms for one driver to call another

page 224/30/07 CSE 30341: Operating Systems Principles

File I/O

page 234/30/07 CSE 30341: Operating Systems Principles

Executive — Security Reference
Monitor
The object-oriented nature of XP enables the use

of a uniform mechanism to perform runtime access
validation and audit checks for every entity in the
system

Whenever a process opens a handle to an object,
the security reference monitor checks the
process’s security token and the object’s access
control list to see whether the process has the
necessary rights

page 244/30/07 CSE 30341: Operating Systems Principles

Executive – Plug-and-Play Manager

Plug-and-Play (PnP) manager is used to
recognize and adapt to changes in the hardware
configuration

When new devices are added (for example, PCI
or USB), the PnP manager loads the appropriate
driver

The manager also keeps track of the resources
used by each device

page 254/30/07 CSE 30341: Operating Systems Principles

Environmental Subsystems

User-mode processes layered over the native XP
executive services to enable XP to run programs
developed for other operating system

XP uses the Win32 subsystem as the main
operating environment; Win32 is used to start all
processes
 It also provides all the keyboard, mouse and graphical

display capabilities

MS-DOS environment is provided by a Win32
application called the virtual dos machine (VDM),
a user-mode process that is paged and
dispatched like any other XP thread

page 264/30/07 CSE 30341: Operating Systems Principles

Environmental Subsystems (Cont.)

16-Bit Windows Environment:
 Provided by a VDM that incorporates Windows on

Windows

 Provides the Windows 3.1 kernel routines and sub
routines for window manager and GDI functions

The POSIX subsystem is designed to run POSIX
applications following the POSIX.1 standard which
is based on the UNIX model

page 274/30/07 CSE 30341: Operating Systems Principles

Environmental Subsystems (Cont.)

OS/2 subsystems runs OS/2 applications

Logon and Security Subsystems authenticates
users logging on to Windows XP systems
 Users are required to have account names and

passwords

 The authentication package authenticates users
whenever they attempt to access an object in the system

 Windows XP uses Kerberos as the default authentication
package

page 284/30/07 CSE 30341: Operating Systems Principles

File System

The fundamental structure of the XP file system
(NTFS) is a volume
 Created by the XP disk administrator utility
 Based on a logical disk partition
 May occupy a portions of a disk, an entire disk, or span

across several disks

All metadata, such as information about the
volume, is stored in a regular file

NTFS uses clusters as the underlying unit of disk
allocation
 A cluster is a number of disk sectors that is a power of

two
 Because the cluster size is smaller than for the 16-bit

FAT file system, the amount of internal fragmentation is
reduced

page 294/30/07 CSE 30341: Operating Systems Principles

File System — Internal Layout

 NTFS uses logical cluster numbers (LCNs) as disk addresses

 A file in NTFS is not a simple byte stream, as in MS-DOS or
UNIX, rather, it is a structured object consisting of attributes

 Every file in NTFS is described by one or more records in an
array stored in a special file called the Master File Table
(MFT)

 Each file on an NTFS volume has a unique ID called a file
reference.
 64-bit quantity that consists of a 48-bit file number and a 16-bit

sequence number

 Can be used to perform internal consistency checks

 The NTFS name space is organized by a hierarchy of
directories; the index root contains the top level of the B+ tree

page 304/30/07 CSE 30341: Operating Systems Principles

File System — Recovery

All file system data structure updates are
performed inside transactions that are logged
 Before a data structure is altered, the transaction writes a

log record that contains redo and undo information

 After the data structure has been changed, a commit
record is written to the log to signify that the transaction
succeeded

 After a crash, the file system data structures can be
restored to a consistent state by processing the log
records

page 314/30/07 CSE 30341: Operating Systems Principles

File System — Recovery (Cont.)

This scheme does not guarantee that all the user
file data can be recovered after a crash, just that
the file system data structures (the metadata files)
are undamaged and reflect some consistent state
prior to the crash

The log is stored in the third metadata file at the
beginning of the volume

The logging functionality is provided by the XP log
file service

page 324/30/07 CSE 30341: Operating Systems Principles

File System — Security

Security of an NTFS volume is derived from the XP
object model

Each file object has a security descriptor attribute
stored in this MFT record

This attribute contains the access token of the
owner of the file, and an access control list that
states the access privileges that are granted to
each user that has access to the file

page 334/30/07 CSE 30341: Operating Systems Principles

Process Management (Cont.)

Scheduling in Win32 utilizes four priority classes:
 IDLE_PRIORITY_CLASS (priority level 4)
 NORMAL_PRIORITY_CLASS (level8 — typical for most

processes
 HIGH_PRIORITY_CLASS (level 13)
 REALTIME_PRIORITY_CLASS (level 24)

To provide performance levels needed for
interactive programs, XP has a special scheduling
rule for processes in the
NORMAL_PRIORITY_CLASS
 XP distinguishes between the foreground process that is

currently selected on the screen, and the background
processes that are not currently selected

 When a process moves into the foreground, XP
increases the scheduling quantum by some factor,
typically 3

page 344/30/07 CSE 30341: Operating Systems Principles

Process Management (Cont.)

The kernel dynamically adjusts the priority of a
thread depending on whether it is I/O-bound or
CPU-bound

To synchronize the concurrent access to shared
objects by threads, the kernel provides
synchronization objects, such as semaphores and
mutexes
 In addition, threads can synchronize by using the

WaitForSingleObject or WaitForMultipleObjects functions

 Another method of synchronization in the Win32 API is
the critical section

page 354/30/07 CSE 30341: Operating Systems Principles

Programmer Interface — Interprocess
Comm.
Win32 applications can have interprocess

communication by sharing kernel objects
An alternate means of interprocess

communications is message passing, which is
particularly popular for Windows GUI applications
 One thread sends a message to another thread or to a

window
 A thread can also send data with the message

Every Win32 thread has its own input queue from
which the thread receives messages

This is more reliable than the shared input queue
of 16-bit windows, because with separate queues,
one stuck application cannot block input to the
other applications

page 364/30/07 CSE 30341: Operating Systems Principles

Memory Management (Cont.)

A heap in the Win32 environment is a region of
reserved address space
 A Win 32 process is created with a 1 MB default heap

 Access is synchronized to protect the heap’s space
allocation data structures from damage by concurrent
updates by multiple threads

Because functions that rely on global or static
data typically fail to work properly in a
multithreaded environment, the thread-local
storage mechanism allocates global storage on
a per-thread basis
 The mechanism provides both dynamic and static

methods of creating thread-local storage

