
page 14/25/07 CSE 30341: Operating Systems Principles

Operating Systems: Hollistic view

Operational States
 Startup / Boot strap process

 Manage resources in the steady state
 Processes/threads/synchronization

 Memory/VM/swap

 File system/storage

Functionality
 Hardware support required to perform meaningful

operations
 TLB size, cache size, disk locations and maps etc.

 If TLB is too small, then performance will suffer

 Software required to use these abstractions
 POSIX, Win32 etc.

 If POSIX did not support threads, then we cannot use
multiple CPUs for same process



page 24/25/07 CSE 30341: Operating Systems Principles

Boot strap process

Steps taken between powering on the machine and
when the operating system has full control

Firmware initializes/probes the hardware, locates
bootable device and starts the master boot record

Master boot record uses probed hardware info to
locate bootable partitions and choose the boot
sector on one of these partitions

Boot program knows about file systems etc. and
starts the OS kernel
 Kernel uses hardware information to load drives

 Kernel initializes data structures
 Process control block with at least an idle task

 File data structures etc..

Question: How can you speed up this process?



page 34/25/07 CSE 30341: Operating Systems Principles

Operating Systems

 Operating systems helps juggle resources and makes it
appear to have more resources than we actually have
 Use idle CPU to schedule another process

 OS overhead itself is useless work. Ideally, OS should
achieve its goals with zero overhead. That means the OS
policies are typically simple.
 We rarely use complex policies that might give good

performance in the long run unless we know for a fact that we
will get better performance most of the time

 Knowing the future would help. Frequently, we approximate by
using the past to predict the future. Fails when changing
between phases.

 Question: When resources become plentiful, what is the role
of OS? Process scheduling in a 32 core laptop processor
 Question: When resources are extremely scarce, what is the

role of OS (100 MHz laptop processor)?



page 44/25/07 CSE 30341: Operating Systems Principles

Processes/threads

Process control block to represent process and its
current state
 Threads to describe multiple threads of execution

Process/thread scheduling multiplexes multiple
processes/threads in order to improve throughput
 Round-Robin, FCFS, gang scheduling ….

Thread synchronization primitives to allow
applications to use multiple CPUs simultaneously

Hardware support for context switching CPU,
thread synchronization etc. helps
 User level implementation is faster than kernel level

Question: How important is process scheduling for
desktops/laptops/PDAs/servers?



page 54/25/07 CSE 30341: Operating Systems Principles

Memory management

 Ideally, memory is fast enough to keep up with
CPU demand
 Practically, fast memory is expensive while inexpensive

memory is slow

Manage memory hierarchy to achieve good
performance by keeping data in fastest memory
 Keep data in TLB, Cache

 Predicting future helps. Use past to predict future

Virtual memory makes memory appear larger
 Internal or external fragmentation

 Fixed size blocks vs variable sized blocks

Can perform interesting tasks depending on the
hardware support (MMU)



page 64/25/07 CSE 30341: Operating Systems Principles

File system

Manage persistent data
 Develop data structures to name objects (files) and

manage them (directories)

 Achieve reliability using replication (RAID)

 File system should be tuned for small files/large files,
sequential/random access, …

 Predictable future is good, use past to tune systems

Achieve good performance by buffering objects in
memory
 Tradeoff reliability of storage system

Disk IO is slow. Hence, we wire-down pages that
are in the middle of IO

Question: What happens to disk scheduling on 32
core processor?



page 74/25/07 CSE 30341: Operating Systems Principles

Managing IO

Hardware support is preferred
 DMA vs programmed IO

 When the DMA controller is running, we may have to wire-
down pages

 DMA controller, Graphics co-processor, Network
processor, Disk controller, Bus controller etc. etc.
 Require drivers to control each device

 Drivers written by vendors

 Reliability of OS is the sum total of OS + drivers
– Assume that the graphics driver crashed. What can the OS do?



page 84/25/07 CSE 30341: Operating Systems Principles

Lifecycle

Suppose we have two processes that require the
CPU. The first one had the CPU and you would like
to let the second process run, ie context switch.
Should you do it at this time?
 Cost of context switch

 Opportunity cost of flushing TLB/cache

 Cost of losing IO locality for file system

 Cost of flushing buffers to disks and bringing in new
pages
 Pages might be wired during transfer preventing new

process from running (by making them wait for memory to
be freed by previous process which was context switched
and hence is not running anyways)

A good scheduler would optimize across all these
parameters: quickly



page 94/25/07 CSE 30341: Operating Systems Principles

Next class

We will ponder how one would build OS for PDA,
laptop, desktop, server, etc.

Hot research areas: Energy management for
servers/laptops, Virtual machine support for
isolation (Java, Xen, VMWare, Parallels, Wine
etc.), Grid/cluster computing to harness lots of
machines, autonomic OS/storage etc.


