Recovery

- Consistency checking compares data in directory structure with data blocks on disk, and tries to fix inconsistencies
 - scandisk in DOS, fsck in unix
- Use system programs to back up data from disk to another storage device (floppy disk, magnetic tape, other magnetic disk, optical)
- Recover lost file or disk by restoring data from backup

Log Structured File Systems

- Log structured (or journaling) file systems record each update to the file system as a transaction
- All transactions are written to a log
 - A transaction is considered committed once it is written to the log
 - However, the file system may not yet be updated
- ▶ The transactions in the log are asynchronously written to the file system
 - When the file system is modified, the transaction is removed from the log
- If the file system crashes, all remaining transactions in the log must still be performed

Overview of Mass Storage Structure

- Magnetic disks provide bulk of secondary storage
 - Drives rotate at 70 to 250 times per second
 - Ipod disks: 4200 rpm
 - Laptop disks: 4200, 5400 rpm or 7200 rpm
 - Desktop disks: 7200 rpm
 - Server disks: 10000 rpm or 15000 rpm
 - **Transfer rate** is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency)
 - Head crash results from disk head contacting disk surface
 - That's bad
- Disks can be removable
- Drive attached to computer via I/O bus
 - Busses vary, including EIDE, ATA, SATA, Firewire, USB, Fibre Channel, SCSI
 - Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

Disk drives

Hard disk head, platter and disk crash

4/4/07

Principles

page 6

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of *logical blocks*, where the logical block is the smallest unit of transfer.
- ▶ The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially.
 - Sector 0 is the first sector of the first track on the outermost cylinder.
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost.

Magnetic tape

- Was early secondary-storage medium
- Relatively permanent and holds large quantities of data
- Access time slow
- ▶ Random access ~1000 times slower than disk
- Mainly used for backup, storage of infrequentlyused data, transfer medium between systems
- Kept in spool and wound or rewound past readwrite head
- Once data under head, transfer rates comparable to disk
- ▶ 20-200GB typical storage
- Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT

Tape pictures

Tape Drives

- ▶ The basic operations for a tape drive differ from those of a disk drive.
- locate positions the tape to a specific logical block, not an entire track (corresponds to seek).
- ▶ The **read position** operation returns the logical block number where the tape head is.
- The space operation enables relative motion.
- Tape drives are "append-only" devices; updating a block in the middle of the tape also effectively erases everything beyond that block.
- ▶ An EOT mark is placed after a block that is written.

Application Interface

- ▶ Most OSs handle removable disks almost exactly like fixed disks a new cartridge is formatted and an empty file system is generated on the disk.
- Tapes are presented as a raw storage medium, i.e., and application does not not open a file on the tape, it opens the whole tape drive as a raw device.
- Usually the tape drive is reserved for the exclusive use of that application.
- Since the OS does not provide file system services, the application must decide how to use the array of blocks.
- Since every application makes up its own rules for how to organize a tape, a tape full of data can generally only be used by the program that created it.

Tertiary Storage Devices

- Low cost is the defining characteristic of tertiary storage.
- Generally, tertiary storage is built using removable media
- Common examples of removable media are floppy disks and CD-ROMs; other types are available.

Removable Disks

- ▶ Floppy disk thin flexible disk coated with magnetic material, enclosed in a protective plastic case.
 - Most floppies hold about 1 MB; similar technology is used for removable disks that hold more than 1 GB.
 - Removable magnetic disks can be nearly as fast as hard disks, but they are at a greater risk of damage from exposure.

Removable Disks (Cont.)

- A magneto-optic disk records data on a rigid platter coated with magnetic material.
 - Laser heat is used to amplify a large, weak magnetic field to record a bit.
 - Laser light is also used to read data (Kerr effect).
 - The magneto-optic head flies much farther from the disk surface than a magnetic disk head, and the magnetic material is covered with a protective layer of plastic or glass; resistant to head crashes.
- Optical disks do not use magnetism; they employ special materials that are altered by laser light.

WORM Disks

- ▶ The data on read-write disks can be modified over and over.
- WORM ("Write Once, Read Many Times") disks can be written only once.
- ▶ Thin aluminum film sandwiched between two glass or plastic platters.
- ▶ To write a bit, the drive uses a laser light to burn a small hole through the aluminum; information can be destroyed by not altered.
- Very durable and reliable.
- Read Only disks, such ad CD-ROM and DVD, come from the factory with the data pre-recorded.

