
page 13/21/07 CSE 30341: Operating Systems Principles

Thrashing

 If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
 low CPU utilization

 operating system thinks that it needs to increase the
degree of multiprogramming because of low cpu
utilization

 another process added to the system

Thrashing ≡ a process is busy swapping pages in
and out

page 23/21/07 CSE 30341: Operating Systems Principles

Thrashing (Cont.)

page 33/21/07 CSE 30341: Operating Systems Principles

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
 Process migrates from one locality to another

 Localities may overlap

 E.g.

for (……) {

computations;

}

…..

for (…..) {

computations;

}

 Why does thrashing occur?
Σ size of locality > total memory size

page 43/21/07 CSE 30341: Operating Systems Principles

Working-Set Model

Δ ≡ working-set window ≡ a fixed number of
page references
Example: 10,000 instruction

WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (varies in time)
 if Δ too small will not encompass entire locality

 if Δ too large will encompass several localities

 if Δ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames

 if D > m ⇒ Thrashing

Policy if D > m, then suspend one of the
processes

page 53/21/07 CSE 30341: Operating Systems Principles

Working-set model

page 63/21/07 CSE 30341: Operating Systems Principles

Keeping Track of the Working Set

Approximate with interval timer + a reference bit
Example: Δ = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of
all reference bits to 0

 If one of the bits in memory = 1 ⇒ page in working set

Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000
time units

page 73/21/07 CSE 30341: Operating Systems Principles

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

page 83/21/07 CSE 30341: Operating Systems Principles

Other Issues -- Prepaging

Prepaging
 To reduce the large number of page faults that occurs at

process startup

 Prepage all or some of the pages a process will need,
before they are referenced

 But if prepaged pages are unused, I/O and memory was
wasted

 Assume s pages are prepaged and α of the pages is
used
 Is cost of s * α save pages faults > or < than the cost of

prepaging
s * (1- α) unnecessary pages?

 α near zero ⇒ prepaging loses

page 93/21/07 CSE 30341: Operating Systems Principles

Other Issues – Page Size

Page size selection must take into
consideration:
 fragmentation

 table size

 I/O overhead

 locality

page 103/21/07 CSE 30341: Operating Systems Principles

Other Issues – TLB Reach

TLB Reach - The amount of memory accessible
from the TLB

TLB Reach = (TLB Size) X (Page Size)
 Ideally, the working set of each process is stored in

the TLB. Otherwise there is a high degree of page
faults.

 Increase the Page Size. This may lead to an
increase in fragmentation as not all applications
require a large page size

Provide Multiple Page Sizes. This allows
applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation.

page 113/21/07 CSE 30341: Operating Systems Principles

Other Issues – Program Structure

Program structure
 Int[128,128] data;
Each row is stored in one page
Program 1
 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

page 123/21/07 CSE 30341: Operating Systems Principles

Wrapup

Memory hierarchy:
 Speed: L1, L2, L3 caches, main memory, disk etc.
 Cost: disk, main memory, L3, L2, L1 etc.

achieve good speed by moving “interesting”
objects to higher cache levels while moving
“uninteresting” objects to lower cache levels

Hardware provides reference bit, modify bit, page
access counters, page table validity bits

OS sets them appropriately such that it will be
notified via page fault
 OS provides policies
 Hardware provides mechanisms

 Implement VM, COW etc. that are tuned to
observed workloads

page 133/21/07 CSE 30341: Operating Systems Principles

Chapter 10: File-System Interface

Objectives:
 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access
methods, file sharing, file locking, and directory structures

 To explore file-system protection

page 143/21/07 CSE 30341: Operating Systems Principles

File Concept

Contiguous persistent logical address space, can
be storing data or programs

File Structure:
None - sequence of words, bytes
Simple record structure

Lines
Fixed length
Variable length

Complex Structures
Formatted document
Relocatable load file

Can simulate last two with first method by inserting
appropriate control characters

Who decides:
Operating system
Program

page 153/21/07 CSE 30341: Operating Systems Principles

File Types – Name, Extension

page 163/21/07 CSE 30341: Operating Systems Principles

File Attributes

Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within

file system
Type – needed for systems that support different

types
Location – pointer to file location on device
Size – current file size
Protection – controls who can do reading, writing,

executing
Time, date, and user identification – data for

protection, security, and usage monitoring
 Information about files are kept in the directory

structure, which is maintained on the disk

page 173/21/07 CSE 30341: Operating Systems Principles

Examples

UNIX: ls -li
26047823 -rw-r--r-- 1 surendar staff

596480 Mar 16 20:17 Lecture22.ppt

page 183/21/07 CSE 30341: Operating Systems Principles

File Operations

File is an abstract data type

File operations:
 Create

 Write

 Read

 Reposition within file (seek)

 Delete

 Truncate

Open(Fi) – search the directory structure on disk
for entry Fi, and move the content of entry to
memory

Close (Fi) – move the content of entry Fi in memory
to directory structure on disk

page 193/21/07 CSE 30341: Operating Systems Principles

Open Files

Several pieces of data are needed to manage open
files:
 File pointer: pointer to last read/write location, per

process that has the file open

 File-open count: counter of number of times a file is open
– to allow removal of data from open-file table when last
processes closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information

page 203/21/07 CSE 30341: Operating Systems Principles

Open File Locking

Provided by some operating systems and file
systems

Mediates access to a file

Mandatory or advisory:
 Mandatory – access is denied depending on locks held

and requested

 Advisory – processes can find status of locks and decide
what to do

page 213/21/07 CSE 30341: Operating Systems Principles

Access Methods

 Sequential Access
read next
write next
reset
no read after last write

(rewrite)
 Direct Access

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

page 223/21/07 CSE 30341: Operating Systems Principles

Sequential-access File

page 233/21/07 CSE 30341: Operating Systems Principles

Simulation of Sequential Access on a Direct-access File

page 243/21/07 CSE 30341: Operating Systems Principles

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

page 253/21/07 CSE 30341: Operating Systems Principles

A Typical File-system Organization

page 263/21/07 CSE 30341: Operating Systems Principles

Operations Performed on Directory

Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system

page 273/21/07 CSE 30341: Operating Systems Principles

Organize the Directory (Logically) to Obtain

Efficiency – locating a file quickly

Naming – convenient to users
 Two users can have same name for different files

 The same file can have several different names

Grouping – logical grouping of files by
properties, (e.g., all Java programs, all
games, …)

page 283/21/07 CSE 30341: Operating Systems Principles

Single-Level Directory

A single directory for all users

Naming problem

Grouping problem

page 293/21/07 CSE 30341: Operating Systems Principles

Two-Level Directory

Separate directory for each user

ν Path name
ν Can have the same file name for different user
ν Efficient searching
ν No grouping capability

page 303/21/07 CSE 30341: Operating Systems Principles

Tree-Structured Directories

page 313/21/07 CSE 30341: Operating Systems Principles

Tree-Structured Directories (Cont)

Efficient searching

Grouping Capability

Current directory (working directory)
 cd /spell/mail/prog

 type list

page 323/21/07 CSE 30341: Operating Systems Principles

Tree-Structured Directories (Cont)

Absolute or relative path name
Creating a new file is done in current directory
Delete a file

rm <file-name>
Creating a new subdirectory is done in current

directory
mkdir <dir-name>

Example: if in current directory /mail
mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

page 333/21/07 CSE 30341: Operating Systems Principles

Acyclic-Graph Directories

Have shared subdirectories and files

page 343/21/07 CSE 30341: Operating Systems Principles

Acyclic-Graph Directories (Cont.)

Two different names (aliasing)

 If dict deletes list ⇒ dangling pointer

Solutions:
 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

New directory entry type
 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file

page 353/21/07 CSE 30341: Operating Systems Principles

General Graph Directory

page 363/21/07 CSE 30341: Operating Systems Principles

General Graph Directory (Cont.)

How do we guarantee no cycles?
 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

