
page 13/21/07 CSE 30341: Operating Systems Principles

Thrashing

 If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
 low CPU utilization

 operating system thinks that it needs to increase the
degree of multiprogramming because of low cpu
utilization

 another process added to the system

Thrashing ≡ a process is busy swapping pages in
and out

page 23/21/07 CSE 30341: Operating Systems Principles

Thrashing (Cont.)

page 33/21/07 CSE 30341: Operating Systems Principles

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
 Process migrates from one locality to another

 Localities may overlap

 E.g.

for (……) {

computations;

}

…..

for (…..) {

computations;

}

 Why does thrashing occur?
Σ size of locality > total memory size

page 43/21/07 CSE 30341: Operating Systems Principles

Working-Set Model

Δ ≡ working-set window ≡ a fixed number of
page references
Example: 10,000 instruction

WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (varies in time)
 if Δ too small will not encompass entire locality

 if Δ too large will encompass several localities

 if Δ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames

 if D > m ⇒ Thrashing

Policy if D > m, then suspend one of the
processes

page 53/21/07 CSE 30341: Operating Systems Principles

Working-set model

page 63/21/07 CSE 30341: Operating Systems Principles

Keeping Track of the Working Set

Approximate with interval timer + a reference bit
Example: Δ = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of
all reference bits to 0

 If one of the bits in memory = 1 ⇒ page in working set

Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000
time units

page 73/21/07 CSE 30341: Operating Systems Principles

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

page 83/21/07 CSE 30341: Operating Systems Principles

Other Issues -- Prepaging

Prepaging
 To reduce the large number of page faults that occurs at

process startup

 Prepage all or some of the pages a process will need,
before they are referenced

 But if prepaged pages are unused, I/O and memory was
wasted

 Assume s pages are prepaged and α of the pages is
used
 Is cost of s * α save pages faults > or < than the cost of

prepaging
s * (1- α) unnecessary pages?

 α near zero ⇒ prepaging loses

page 93/21/07 CSE 30341: Operating Systems Principles

Other Issues – Page Size

Page size selection must take into
consideration:
 fragmentation

 table size

 I/O overhead

 locality

page 103/21/07 CSE 30341: Operating Systems Principles

Other Issues – TLB Reach

TLB Reach - The amount of memory accessible
from the TLB

TLB Reach = (TLB Size) X (Page Size)
 Ideally, the working set of each process is stored in

the TLB. Otherwise there is a high degree of page
faults.

 Increase the Page Size. This may lead to an
increase in fragmentation as not all applications
require a large page size

Provide Multiple Page Sizes. This allows
applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation.

page 113/21/07 CSE 30341: Operating Systems Principles

Other Issues – Program Structure

Program structure
 Int[128,128] data;
Each row is stored in one page
Program 1
 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

page 123/21/07 CSE 30341: Operating Systems Principles

Wrapup

Memory hierarchy:
 Speed: L1, L2, L3 caches, main memory, disk etc.
 Cost: disk, main memory, L3, L2, L1 etc.

achieve good speed by moving “interesting”
objects to higher cache levels while moving
“uninteresting” objects to lower cache levels

Hardware provides reference bit, modify bit, page
access counters, page table validity bits

OS sets them appropriately such that it will be
notified via page fault
 OS provides policies
 Hardware provides mechanisms

 Implement VM, COW etc. that are tuned to
observed workloads

page 133/21/07 CSE 30341: Operating Systems Principles

Chapter 10: File-System Interface

Objectives:
 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access
methods, file sharing, file locking, and directory structures

 To explore file-system protection

page 143/21/07 CSE 30341: Operating Systems Principles

File Concept

Contiguous persistent logical address space, can
be storing data or programs

File Structure:
None - sequence of words, bytes
Simple record structure

Lines
Fixed length
Variable length

Complex Structures
Formatted document
Relocatable load file

Can simulate last two with first method by inserting
appropriate control characters

Who decides:
Operating system
Program

page 153/21/07 CSE 30341: Operating Systems Principles

File Types – Name, Extension

page 163/21/07 CSE 30341: Operating Systems Principles

File Attributes

Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within

file system
Type – needed for systems that support different

types
Location – pointer to file location on device
Size – current file size
Protection – controls who can do reading, writing,

executing
Time, date, and user identification – data for

protection, security, and usage monitoring
 Information about files are kept in the directory

structure, which is maintained on the disk

page 173/21/07 CSE 30341: Operating Systems Principles

Examples

UNIX: ls -li
26047823 -rw-r--r-- 1 surendar staff

596480 Mar 16 20:17 Lecture22.ppt

page 183/21/07 CSE 30341: Operating Systems Principles

File Operations

File is an abstract data type

File operations:
 Create

 Write

 Read

 Reposition within file (seek)

 Delete

 Truncate

Open(Fi) – search the directory structure on disk
for entry Fi, and move the content of entry to
memory

Close (Fi) – move the content of entry Fi in memory
to directory structure on disk

page 193/21/07 CSE 30341: Operating Systems Principles

Open Files

Several pieces of data are needed to manage open
files:
 File pointer: pointer to last read/write location, per

process that has the file open

 File-open count: counter of number of times a file is open
– to allow removal of data from open-file table when last
processes closes it

 Disk location of the file: cache of data access information

 Access rights: per-process access mode information

page 203/21/07 CSE 30341: Operating Systems Principles

Open File Locking

Provided by some operating systems and file
systems

Mediates access to a file

Mandatory or advisory:
 Mandatory – access is denied depending on locks held

and requested

 Advisory – processes can find status of locks and decide
what to do

page 213/21/07 CSE 30341: Operating Systems Principles

Access Methods

 Sequential Access
read next
write next
reset
no read after last write

(rewrite)
 Direct Access

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

page 223/21/07 CSE 30341: Operating Systems Principles

Sequential-access File

page 233/21/07 CSE 30341: Operating Systems Principles

Simulation of Sequential Access on a Direct-access File

page 243/21/07 CSE 30341: Operating Systems Principles

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

page 253/21/07 CSE 30341: Operating Systems Principles

A Typical File-system Organization

page 263/21/07 CSE 30341: Operating Systems Principles

Operations Performed on Directory

Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system

page 273/21/07 CSE 30341: Operating Systems Principles

Organize the Directory (Logically) to Obtain

Efficiency – locating a file quickly

Naming – convenient to users
 Two users can have same name for different files

 The same file can have several different names

Grouping – logical grouping of files by
properties, (e.g., all Java programs, all
games, …)

page 283/21/07 CSE 30341: Operating Systems Principles

Single-Level Directory

A single directory for all users

Naming problem

Grouping problem

page 293/21/07 CSE 30341: Operating Systems Principles

Two-Level Directory

Separate directory for each user

ν Path name
ν Can have the same file name for different user
ν Efficient searching
ν No grouping capability

page 303/21/07 CSE 30341: Operating Systems Principles

Tree-Structured Directories

page 313/21/07 CSE 30341: Operating Systems Principles

Tree-Structured Directories (Cont)

Efficient searching

Grouping Capability

Current directory (working directory)
 cd /spell/mail/prog

 type list

page 323/21/07 CSE 30341: Operating Systems Principles

Tree-Structured Directories (Cont)

Absolute or relative path name
Creating a new file is done in current directory
Delete a file

rm <file-name>
Creating a new subdirectory is done in current

directory
mkdir <dir-name>

Example: if in current directory /mail
mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

page 333/21/07 CSE 30341: Operating Systems Principles

Acyclic-Graph Directories

Have shared subdirectories and files

page 343/21/07 CSE 30341: Operating Systems Principles

Acyclic-Graph Directories (Cont.)

Two different names (aliasing)

 If dict deletes list ⇒ dangling pointer

Solutions:
 Backpointers, so we can delete all pointers

Variable size records a problem

 Backpointers using a daisy chain organization

 Entry-hold-count solution

New directory entry type
 Link – another name (pointer) to an existing file

 Resolve the link – follow pointer to locate the file

page 353/21/07 CSE 30341: Operating Systems Principles

General Graph Directory

page 363/21/07 CSE 30341: Operating Systems Principles

General Graph Directory (Cont.)

How do we guarantee no cycles?
 Allow only links to file not subdirectories

 Garbage collection

 Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

