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Chapter 9: Virtual memory

Virtual memory – separation of user logical
memory from physical memory.
 Only part of the program needs to be in memory for

execution.

 Logical address space can therefore be much larger than
physical address space.

 Allows address spaces to be shared by several
processes.

 Allows for more efficient process creation.

Virtual memory can be implemented via:
 Demand paging

 Demand segmentation
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Demand Paging

Bring a page into memory only when it is needed
 Less I/O needed if not all pages are needed

 Less memory needed

 Faster response

 More users

Page is needed ⇒ reference to it
 invalid reference ⇒ abort

 not-in-memory ⇒ bring to memory
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Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

 Initially valid–invalid but is set to 0 on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is 0 ⇒
page fault
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Page Table When Some Pages Are Not
in Main Memory
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Page Fault

 If there is ever a reference to a page, first reference will trap to
OS ⇒ page fault

 OS looks at another table to decide:
 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction:  Least Recently Used

 block move

 auto increment/decrement location
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Steps in Handling a Page Fault
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What happens if there is no free frame?

Page replacement – find some page in memory, but
not really in use, swap it out
 algorithm

 performance – want an algorithm which will result in
minimum number of page faults

Same page may be brought into memory several
times
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Performance of Demand Paging

Page Fault Rate 0 ≤ p ≤ 1.0
 if p = 0 no page faults

 if p = 1, every reference is a fault

Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ [swap page out ]

+ swap page in

+ restart overhead)
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Demand Paging Example

Memory access time = 1 microsecond

50% of the time the page that is being replaced
has been modified and therefore needs to be
swapped out

Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P      (in msec)
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Process Creation

 Virtual memory allows other benefits during
process creation:

- Copy-on-Write

- Memory-Mapped Files (later)
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Copy-on-Write

Copy-on-Write (COW) allows both parent and child
processes (after a fork()) to initially share the same
pages in memory

If either process modifies a shared page, only then
is the page copied

COW allows more efficient process creation as
only modified pages are copied

Free pages are allocated from a pool of zeroed-out
pages
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Page Replacement

Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement

Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory
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Need For Page Replacement
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Basic Page Replacement

Find the location of the desired page on disk

Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page

replacement algorithm to select a victim frame

Read the desired page into the (newly) free frame.
Update the page and frame tables.

Restart the process
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Page Replacement
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Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular
string of memory references (reference string) and
computing the number of page faults on that string

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Graph of Page Faults Versus The Number of Frames
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First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly
 more frames ⇒ more page faults
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FIFO Page Replacement



page 203/7/07 CSE 30341: Operating Systems Principles

FIFO Illustrating Belady’s Anomaly
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Optimal Algorithm

Replace page that will not be used for longest
period of time

4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?
Used for measuring how well your algorithm

performs
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Optimal Page Replacement


