
page 13/7/07 CSE 30341: Operating Systems Principles

Chapter 9: Virtual memory

Virtual memory – separation of user logical
memory from physical memory.
 Only part of the program needs to be in memory for

execution.

 Logical address space can therefore be much larger than
physical address space.

 Allows address spaces to be shared by several
processes.

 Allows for more efficient process creation.

Virtual memory can be implemented via:
 Demand paging

 Demand segmentation

page 23/7/07 CSE 30341: Operating Systems Principles

Demand Paging

Bring a page into memory only when it is needed
 Less I/O needed if not all pages are needed

 Less memory needed

 Faster response

 More users

Page is needed ⇒ reference to it
 invalid reference ⇒ abort

 not-in-memory ⇒ bring to memory

page 33/7/07 CSE 30341: Operating Systems Principles

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

 Initially valid–invalid but is set to 0 on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is 0 ⇒
page fault

1
1
1
1
0

0
0

M

Frame # valid-invalid bit

page table

page 43/7/07 CSE 30341: Operating Systems Principles

Page Table When Some Pages Are Not
in Main Memory

page 53/7/07 CSE 30341: Operating Systems Principles

Page Fault

 If there is ever a reference to a page, first reference will trap to
OS ⇒ page fault

 OS looks at another table to decide:
 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

page 63/7/07 CSE 30341: Operating Systems Principles

Steps in Handling a Page Fault

page 73/7/07 CSE 30341: Operating Systems Principles

What happens if there is no free frame?

Page replacement – find some page in memory, but
not really in use, swap it out
 algorithm

 performance – want an algorithm which will result in
minimum number of page faults

Same page may be brought into memory several
times

page 83/7/07 CSE 30341: Operating Systems Principles

Performance of Demand Paging

Page Fault Rate 0 ≤ p ≤ 1.0
 if p = 0 no page faults

 if p = 1, every reference is a fault

Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ [swap page out]

+ swap page in

+ restart overhead)

page 93/7/07 CSE 30341: Operating Systems Principles

Demand Paging Example

Memory access time = 1 microsecond

50% of the time the page that is being replaced
has been modified and therefore needs to be
swapped out

Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

page 103/7/07 CSE 30341: Operating Systems Principles

Process Creation

 Virtual memory allows other benefits during
process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

page 113/7/07 CSE 30341: Operating Systems Principles

Copy-on-Write

Copy-on-Write (COW) allows both parent and child
processes (after a fork()) to initially share the same
pages in memory

If either process modifies a shared page, only then
is the page copied

COW allows more efficient process creation as
only modified pages are copied

Free pages are allocated from a pool of zeroed-out
pages

page 123/7/07 CSE 30341: Operating Systems Principles

Page Replacement

Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement

Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory

page 133/7/07 CSE 30341: Operating Systems Principles

Need For Page Replacement

page 143/7/07 CSE 30341: Operating Systems Principles

Basic Page Replacement

Find the location of the desired page on disk

Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page

replacement algorithm to select a victim frame

Read the desired page into the (newly) free frame.
Update the page and frame tables.

Restart the process

page 153/7/07 CSE 30341: Operating Systems Principles

Page Replacement

page 163/7/07 CSE 30341: Operating Systems Principles

Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular
string of memory references (reference string) and
computing the number of page faults on that string

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

page 173/7/07 CSE 30341: Operating Systems Principles

Graph of Page Faults Versus The Number of Frames

page 183/7/07 CSE 30341: Operating Systems Principles

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly
 more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

page 193/7/07 CSE 30341: Operating Systems Principles

FIFO Page Replacement

page 203/7/07 CSE 30341: Operating Systems Principles

FIFO Illustrating Belady’s Anomaly

page 213/7/07 CSE 30341: Operating Systems Principles

Optimal Algorithm

Replace page that will not be used for longest
period of time

4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?
Used for measuring how well your algorithm

performs

1

2

3

4

6 page faults

4 5

page 223/7/07 CSE 30341: Operating Systems Principles

Optimal Page Replacement

