Chapter 9: Virtual memory

- Virtual memory separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution.
 - Logical address space can therefore be much larger than physical address space.
 - Allows address spaces to be shared by several processes.
 - Allows for more efficient process creation.
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Demand Paging

- Bring a page into memory only when it is needed
 - Less I/O needed if not all pages are needed
 - Less memory needed
 - Faster response
 - More users
- ▶ Page is needed ⇒ reference to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory

Valid-Invalid Bit

- With each page table entry a valid–invalid bit is associated (1 ⇒ in-memory, 0 ⇒ not-in-memory)
- Initially valid—invalid but is set to 0 on all entries
- **Example of a page table snapshot:**

Frame #	valid-invalid b
	1
	1
	1
	1
	0
M	
	0
	0

page table

During address translation, if valid–invalid bit in page table entry is 0 ⇒ page fault

Page Table When Some Pages Are Not in Main Memory

Page Fault

- If there is ever a reference to a page, first reference will trap to OS ⇒ page fault
- OS looks at another table to decide:
 - Invalid reference ⇒ abort.
 - Just not in memory.
- Get empty frame.
- Swap page into frame.
- Reset tables, validation bit = 1.
- Restart instruction: Least Recently Used

auto increment/decrement location

Steps in Handling a Page Fault

What happens if there is no free frame?

- Page replacement find some page in memory, but not really in use, swap it out
 - algorithm
 - performance want an algorithm which will result in minimum number of page faults
- Same page may be brought into memory several times

Performance of Demand Paging

- ▶ Page Fault Rate $0 \le p \le 1.0$
 - \blacksquare if p = 0 no page faults
 - \blacksquare if p = 1, every reference is a fault
- Effective Access Time (EAT)

$$EAT = (1 - p) x memory access$$

- + p (page fault overhead
- + [swap page out]
- + swap page in
- + restart overhead)

Demand Paging Example

- Memory access time = 1 microsecond
- ▶ 50% of the time the page that is being replaced has been modified and therefore needs to be swapped out
- Swap Page Time = 10 msec = 10,000 msec
 EAT = (1 − p) x 1 + p (15000)
 1 + 15000P (in msec)

Process Creation

- Virtual memory allows other benefits during process creation:
 - Copy-on-Write
 - Memory-Mapped Files (later)

Copy-on-Write

Copy-on-Write (COW) allows both parent and child processes (after a fork()) to initially share the same pages in memory

If either process modifies a shared page, only then is the page copied

- COW allows more efficient process creation as only modified pages are copied
- Free pages are allocated from a pool of zeroed-out pages

Page Replacement

- Prevent over-allocation of memory by modifying page-fault service routine to include page replacement
- Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory

Need For Page Replacement

Basic Page Replacement

- Find the location of the desired page on disk
- Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a victim frame
- Read the desired page into the (newly) free frame.
 Update the page and frame tables.
- Restart the process

Page Replacement

Page Replacement Algorithms

- Want lowest page-fault rate
- Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string
- In all our examples, the reference string is

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm

- Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- ▶ 3 frames (3 pages can be in memory at a time per process)

4 frames 3 3 2

- ► FIFO Replacement Belady's Anomaly
 - \blacksquare more frames \Rightarrow more page faults

FIFO Page Replacement

FIFO Illustrating Belady's Anomaly

Optimal Algorithm

- Replace page that will not be used for longest period of time
- 4 frames example

1 4

2

6 page faults

3

4 5

- How do you know this?
- Used for measuring how well your algorithm performs

Optimal Page Replacement

