
page 11/19/07 CSE 30341: Operating Systems Principles

Outline (Chapters 1 and 2)

 Chapter 1
 Introduce important concepts (cache, async IO)

 Chapter 2
 Interacting with services provided by the OS

 System calls - link between application programs and OS
 System programs - users interact using programs

 Ways of structuring the OS itself - OS can be a large
code base that needs to be maintainable, portable etc.
 Monolithic - aka spaghetti code
 Layered
 Micro-kernel - small and efficient kernel, functionality

moved to user level
 Virtual machine - make it look like multiple “machines” -

very popular with data centers

 Installation, customization etc.
 booting

The original slides were copyright Silberschatz, Galvin and Gagne, 2005

page 21/19/07 CSE 30341: Operating Systems Principles

Components of a computer system

page 31/19/07 CSE 30341: Operating Systems Principles

Recap OS:allows for program execution

 load a program into memory and run that program,
end execution, either normally or abnormally
(indicating error)
 I/O operations - A running program requires I/O, which

may involve a file, an I/O device, shared with other
programs or computers

 Error detection – OS are constantly aware of errors
 May occur in the CPU and memory hardware, in I/O

devices and in user program

 For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

page 41/19/07 CSE 30341: Operating Systems Principles

Storage structure

Computer programs must be stored in main memory
 Fast memory is expensive - we use hierarchy and move

stuff around to achieve cost benefits and speed

 Implicit or explicit

page 51/19/07 CSE 30341: Operating Systems Principles

Caching principle

 Important principle, performed at many levels in a
computer (in hardware, operating system,
software)

 Information in use is copied from slower to faster
storage temporarily

Faster storage (cache) checked first to determine if
information is there
 If it is (cache hit), information used directly from the

cache (fast)
 If not (cache miss), data copied to cache and used there

 May need to evict some other data (cache replacement)

Cache smaller than storage being cached
 Cache management important design problem
 Cache size and replacement policies are important
 Sometimes bring data before needed (pre-fetch)

page 61/19/07 CSE 30341: Operating Systems Principles

Hierarchy performance difference

page 71/19/07 CSE 30341: Operating Systems Principles

Two I/O Methods

Synchronous means system call does not return till
I/O finished. Asynchronous call returns
immediately; separate notification (interrupt) on
completion

Synchronous Asynchronous

page 81/19/07 CSE 30341: Operating Systems Principles

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector,
which contains the addresses of all the service
routines.

 Interrupt architecture must save the address of the
interrupted instruction.

 Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost
interrupt.

A trap is a software-generated interrupt caused
either by an error or a user request.

An operating system is interrupt driven.

page 91/19/07 CSE 30341: Operating Systems Principles

Interfacing with OS

User interface - Almost all operating systems have
a user interface (UI). Varies between
 Command-Line (CLI) (e.g., shells in UNIX,

command.exe in Windows). The command line may itself
perform functions or call other system programs to
implement functions (e.g. in UNIX, /bin/rm to remove
files) [more later]

 Graphics User Interface (GUI) (e.g., MS windows, MAC
OS X Aqua, Unix X & variants). point and click interface

 Batch. Commands are given using a file/command script
to the OS and are executed with little user interaction.
Used in high performance computers. (e.g. .bat files in
DOS, shell scripts, JCL interpreters for Main frames)

page 101/19/07 CSE 30341: Operating Systems Principles

System Calls

Programming interface to the services provided by
the OS

Typically written in a high-level language (C, C++)
Mostly accessed by programs via a high-level

Application Program Interface (API) rather than
direct system call use

Three most common APIs are Win32 API for
Windows, POSIX API for POSIX-based systems
(including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual
machine (JVM)

Why use APIs rather than system calls?
 Underlying systems calls (error codes) can be more

complicated. API gives a uniform, portable interface

page 111/19/07 CSE 30341: Operating Systems Principles

Example of System Calls

System call sequence to copy the contents of one
file to another file (POSIX like C pseudo code)
(bold are API system calls)

write(1, “Input file\n”, 11);

read(0, &buffer, 100);

…..

fd = open(buffer, O_RDONLY);

outfd = open(buffer, O_WRONLY | O_CREAT | O_TRUNC,
0666);

if (outfd < 0) abort(“File creation failed”);

…..

close(fd);

page 121/19/07 CSE 30341: Operating Systems Principles

Standard C Library Example

C program invoking printf() library call, which calls
write() system call

page 131/19/07 CSE 30341: Operating Systems Principles

System Call Implementation

A number associated with each system call
 System-call interface maintains a table indexed according

to these numbers

 Additional info: check /usr/include/sys/syscall.h

The system call interface invokes intended system
call in OS kernel and returns status of the system
call and any return values

The caller need know nothing about how the
system call is implemented
 Just needs to obey API and understand what OS will do

as a result call

 Details of OS interface hidden from programmer by API
 Managed by run-time support library (set of functions built

into libraries included with compiler)

page 141/19/07 CSE 30341: Operating Systems Principles

API – System Call – OS Relationship

page 151/19/07 CSE 30341: Operating Systems Principles

System Call Parameter Passing

More information is required than simply identity of
desired system call
Exact type and amount of information vary according to

OS and call

Three general methods used to pass parameters to
the OS
Simplest: pass the parameters in hardware registers

 In some cases, may be more parameters than registers

Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register
This approach taken by Linux and Solaris

Parameters placed, or pushed, onto the stack by the
program and popped off the stack by the operating
system
Block and stack methods do not limit the number or length of

parameters being passed

page 161/19/07 CSE 30341: Operating Systems Principles

Parameter Passing via Table

page 171/19/07 CSE 30341: Operating Systems Principles

System Programs

 Provide a convenient environment for program development
and execution. Some of them are simply user interfaces to
system calls; others are considerably more complex
 File management - Create, delete, copy, edit, rename, print,

dump, list, and generally manipulate files and directories

 Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging
systems for higher-level and machine language

 Communications - chat, web browsing, email, remote login, file
transfers

 Status information - system info such as date, time, amount of
available memory, disk space, number of users

page 181/19/07 CSE 30341: Operating Systems Principles

Operating System Design and Implementation

Design and Implementation of OS affected by
choice of hardware, type of system

User goals and System goals
 User goals – operating system should be convenient to

use, easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to
design, implement, and maintain (portable?), as well as
flexible, reliable, error-free, and efficient

 Important principle to separate

Policy: What will be done?
Mechanism: How to do it?
 The separation of policy from mechanism is a very

important principle, it allows maximum flexibility if policy
decisions are to be changed later

page 191/19/07 CSE 30341: Operating Systems Principles

OS Structure

Simple

Layered

Microkernel

Modular

page 201/19/07 CSE 30341: Operating Systems Principles

Simple Structure

MS-DOS – written to provide the most functionality
in the least space
 Not divided into modules

 Although MS-DOS has some structure, its interfaces and
levels of functionality are not well separated

page 211/19/07 CSE 30341: Operating Systems Principles

Layered Approach

The operating system is divided into a number of
layers (levels), each built on top of lower layers.
The bottom layer (layer 0), is the hardware; the
highest (layer N) is the user interface.

With modularity, layers are selected such that each
uses functions (operations) and services of only
lower-level layers

UNIX – the OS consists of two separable parts
 Systems programs
 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

page 221/19/07 CSE 30341: Operating Systems Principles

UNIX System Structure

page 231/19/07 CSE 30341: Operating Systems Principles

Microkernel System Structure

Moves as much from the kernel into “user” space

Communication takes place between user modules
using message passing

Benefits:
 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

Detriments:
 Performance overhead of user space to kernel space

communication

page 241/19/07 CSE 30341: Operating Systems Principles

Mac OS X Structure

page 251/19/07 CSE 30341: Operating Systems Principles

Modules

Most modern operating systems implement kernel
modules
 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

Overall, similar to layers but with more flexible

page 261/19/07 CSE 30341: Operating Systems Principles

Virtual Machines

A virtual machine takes the layered approach to
its logical conclusion. It treats hardware and the
operating system kernel as though they were all
hardware

A virtual machine provides an interface identical to
the underlying bare hardware

The operating system creates the illusion of
multiple processes, each executing on its own
processor with its own (virtual) memory

page 271/19/07 CSE 30341: Operating Systems Principles

Virtual Machines (Cont.)

 (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

page 281/19/07 CSE 30341: Operating Systems Principles

Virtual machines for data centers

The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines.
This isolation, however, permits no direct sharing
of resources.

A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual
machine, instead of on a physical machine and so
does not disrupt normal system operation.

The virtual machine concept is difficult to
implement due to the effort required to provide an
exact duplicate to the underlying machine

page 291/19/07 CSE 30341: Operating Systems Principles

Using VM by IT - VMWare ACT

page 301/19/07 CSE 30341: Operating Systems Principles

VMware Architecture

page 311/19/07 CSE 30341: Operating Systems Principles

The Java Virtual Machine

page 321/19/07 CSE 30341: Operating Systems Principles

Operating System Generation

Operating systems are designed to run on any of a
class of machines; the system must be configured
for each specific computer site

SYSGEN program obtains information concerning
the specific configuration of the hardware system

Booting – starting a computer by loading the kernel

Bootstrap program – code stored in ROM that is
able to locate the kernel, load it into memory, and
start its execution

page 331/19/07 CSE 30341: Operating Systems Principles

System Boot

Operating system must be made available to
hardware so hardware can start it
 Small piece of code – bootstrap loader, locates the

kernel, loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed
location loads bootstrap loader

 When power initialized on system, execution starts at a
fixed memory location
 Firmware used to hold initial boot code

page 341/19/07 CSE 30341: Operating Systems Principles

Wrapup

System calls provide a mechanism for user
programs to access OS services
 System programs use system calls to provide

functionality to users

Need to design the OS for maximum flexibility of
the user and OS developer

Other issues such as bootstrapping to initialize the
OS

