
page 13/5/07 CSE 30341: Operating Systems Principles

8.4.3: Memory Protection

Need some mechanism to identify that a page is not
allocated to a process (even though the page table
will have an entry for this logical page)

Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’ logical
address space

page 23/5/07 CSE 30341: Operating Systems Principles

Valid (v) or Invalid (i) Bit In A Page
Table

page 33/5/07 CSE 30341: Operating Systems Principles

8.5: Page Table Structure

Problem is that page tables are per-process
structure and they can be large
 Consider 64 bit address space and page size of 8 KB

 Page table size = 2^51 or 2*10^15 entries

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables

page 43/5/07 CSE 30341: Operating Systems Principles

Hierarchical Page Tables

Break up the logical address space into multiple
page tables

A simple technique is a two-level page table

page 53/5/07 CSE 30341: Operating Systems Principles

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided
into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided
into:
 a 10-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12

page 63/5/07 CSE 30341: Operating Systems Principles

Two-Level Page-Table Scheme

page 73/5/07 CSE 30341: Operating Systems Principles

Address-Translation Scheme

Address-translation scheme for a two-level 32-bit
paging architecture

page 83/5/07 CSE 30341: Operating Systems Principles

Hashed Page Tables

Common in address spaces > 32 bits

The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

page 93/5/07 CSE 30341: Operating Systems Principles

Hashed Page Table

page 103/5/07 CSE 30341: Operating Systems Principles

Inverted Page Table

One entry for each real frame of memory

Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page

Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

Use hash table to limit the search to one — or at most
a few — page-table entries

page 113/5/07 CSE 30341: Operating Systems Principles

Inverted Page Table Architecture

page 123/5/07 CSE 30341: Operating Systems Principles

Shared Pages

Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical
address space of all processes

Private code and data
 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear
anywhere in the logical address space

page 133/5/07 CSE 30341: Operating Systems Principles

Shared Pages Example

page 143/5/07 CSE 30341: Operating Systems Principles

8.6: Segmentation

Memory-management scheme that supports user
view of memory

A program is a collection of segments. A segment is
a logical unit such as:

main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

page 153/5/07 CSE 30341: Operating Systems Principles

User’s View of a Program

page 163/5/07 CSE 30341: Operating Systems Principles

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

page 173/5/07 CSE 30341: Operating Systems Principles

Segmentation Architecture

Logical address consists of a two tuple:

<segment-number, offset>,

Segment table – maps two-dimensional physical
addresses; each table entry has:
base – contains the starting physical address where the

segments reside in memory

 limit – specifies the length of the segment

Segment-table base register (STBR) points to the
segment table’s location in memory

Segment-table length register (STLR) indicates
number of segments used by a program;

 segment number s is legal if s < STLR

page 183/5/07 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)

Relocation.
 dynamic

 by segment table

Sharing.
 shared segments

 same segment number

Allocation.
 first fit/best fit

 external fragmentation

page 193/5/07 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)

Protection. With each entry in segment table
associate:
 validation bit = 0 ⇒ illegal segment

 read/write/execute privileges

Protection bits associated with segments; code
sharing occurs at segment level

Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

A segmentation example is shown in the following
diagram

page 203/5/07 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 213/5/07 CSE 30341: Operating Systems Principles

Example of Segmentation

page 223/5/07 CSE 30341: Operating Systems Principles

Sharing of Segments

page 233/5/07 CSE 30341: Operating Systems Principles

Segmentation with Paging – MULTICS

The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a
page table for this segment

page 243/5/07 CSE 30341: Operating Systems Principles

MULTICS Address Translation Scheme

page 253/5/07 CSE 30341: Operating Systems Principles

8.7: Intel 30386 Address Translation

segmentation with paging for memory
management with a two-level paging scheme

page 263/5/07 CSE 30341: Operating Systems Principles

Linux on Intel 80x86

Uses minimal segmentation to keep memory
management implementation more portable

Uses 6 segments:
 Kernel code

 Kernel data

 User code (shared by all user processes, using logical
addresses)

 User data (likewise shared)

 Task-state (per-process hardware context)

 LDT

Uses 2 protection levels:
 Kernel mode

 User mode

