8.4.3: Memory Protection

» Need some mechanism to identify that a page is not
allocated to a process (even though the page table
will have an entry for this logical page)

» Valid-invalid bit attached to each entry in the page
table:

m “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

B “invalid” indicates that the page is not in the process’ logical
address space

CSE 30341: Operating Systems Principles page 1

Valid (v) or Invalid (i) Bit In A Page
Table

2| page 0
00000 frame number valid—invalid bit
page 0 \ / 3| page 1
0|2|v
page 1 1 BBy 4| page 2
214 | v
age 2 5
- 3TF [TV
page 3 4 8V 6
5|19 |v
page 4 6[0]i 7| page3
10,468 page 5 7 Eond 8| page 4
12,287 page table
9| page 5
page n

CSE 30341: Operating Systems Principles page 2

8.5: Page Table Structure

» Problem is that page tables are per-process
structure and they can be large

B Consider 64 bit address space and page size of 8 KB
® Page table size = 2*51 or 2*10”*15 entries

» Hierarchical Paging

» Hashed Page Tables

» Inverted Page Tables

CSE 30341: Operating Systems Principles page 3

-I Hierarchical Page Tables

» Break up the logical address space into multiple
page tables

» A simple technique is a two-level page table

3/5/07 CSE 30341: Operating Systems Principles page 4

Two-Level Paging Example

A logical address (on 32-bit machine with 4K page size) is divided
into:

B a page number consisting of 20 bits

B a page offset consisting of 12 bits

» Since the page table is paged, the page number is further divided
into:

m a 10-bit page number

B a 10-bit page offset

» Thus, a logical address is as follows:

page number page offset
P, P> d
10 10 12

where p; is an index into the outer page table, and p, is the
displacement within the page of the outer page table

I 3/5/07 CSE 30341: Operating Systems Principles page 5

Two-Level Page-Table Scheme

outer page ™ 929

table . \ 900
i [l :
page of 929
page table
page table :
memory

CSE 30341: Operating Systems Principles page 6

Address-TransIation Scheme

» Address-translation scheme for a two-level 32-bit
paging architecture

logical address
Py | P2 | d

|

P

.

outer page d
table {

page of
page table

3/5/07 CSE 30341: Operating Systems Principles page 7

- Hashed Page Tables

» Common in address spaces > 32 bits

» The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

» Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

3/5/07 CSE 30341: Operating Systems Principles page 8

- Hashed Page Table

physical
logical address J' address

p d r 0] —

physical
-—-Iq|S|’T|_TIp|r|_T~- mermory

hash table

I 3/5/07 CSE 30341: Operating Systems Principles page 9

- Inverted Page Table

» One entry for each real frame of memory

» Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page

» Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

» Use hash table to limit the search to one — or at most
a few — page-table entries

3/5/07 CSE 30341: Operating Systems Principles page 10

Inverted Page Table Architecture

logical :
address ‘L pg)(;smal
address :
. : physical
> pd] P d L d > memory
search l }i
pid | p

page table

CSE 30341: Operating Systems Principles page 11

-I Shared Pages

» Shared code

m One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

B Shared code must appear in same location in the logical
address space of all processes

» Private code and data

B Each process keeps a separate copy of the code and data

B The pages for the private code and data can appear
anywhere in the logical address space

3/5/07 CSE 30341: Operating Systems Principles page 12

I Shared Pages Example

ed 1
3
ed 2 4 1| datai
ed 3 B 2| data3
1
data 1 page table 3 ed 1
for P
1 ed 1
process P, 3 4| ed?
ed?2
4 5
ed 3 6
7 6 ed3
data 2 page table
for P2 7 data 2
S process P,
3 8
ed 2 0
9
ed 3 B
- 10
data 3 page table
for P,
process P,

3/5/07 CSE 30341: Operating Systems Principles page 13

-I 8.6: Segmentation

» Memory-management scheme that supports user
view of memory

» A program is a collection of segments. A segment is
a logical unit such as:

main program,
procedure,
function,
method,
object,

local variables, global variables,
common block,
stack,

symbol table, arrays

3/5/07 CSE 30341: Operating Systems Principles page 14

User’'s View of a Program

subroutine

symbol
table

Sqrt

main
program

logical address

3/5/07 CSE 30341: Operating Systems Principles page 15

Logical View of Segmentation

user space physical memory space

3/5/07 CSE 30341: Operating Systems Principles

Segmentation Architecture

» Logical address consists of a two tuple:
<segment-number, offset>,

» Segment table — maps two-dimensional physical
addresses; each table entry has:

B base — contains the starting physical address where the
segments reside in memory

B /imit — specifies the length of the segment

» Segment-table base register (STBR) points to the
segment table’s location in memory

» Segment-table length register (STLR) indicates
number of segments used by a program;

segment number s is legal if s < STLR

3/5/07 CSE 30341: Operating Systems Principles page 17

Segmentation Architecture (Cont.)

» Relocation.
B dynamic
B by segment table

» Sharing.
B shared segments
B same segment number

» Allocation.
m first fit/best fit
B external fragmentation

3/5/07 CSE 30341: Operating Systems Principles page 18

Segmentation Architecture (Cont.)

» Protection. With each entry in segment table
associate:
B validation bit = 0 = illegal segment

B read/write/execute privileges

» Protection bits associated with segments; code
sharing occurs at segment level

» Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

» A segmentation example is shown in the following
diagram

3/5/07 CSE 30341: Operating Systems Principles page 19

Address Translation Architecture

-

segment
table

NS &

no

CPU o s d

\/
trap: addressing error

physical memory

3/5/07 CSE 30341: Operating Systems Principles page 20

Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3] 1100 | 3200 segment3
411000 | 4700

segment table 4300

segment 1 segment 2

segment 2

4700

logical address space segment 4

5700

6300

segment 1

6700
physical memorv
3/5/07 CSE 30341: Operating Systems Principles page 21

Sharing of Segments

editor

segment 0

data 1

segment 1

logical memory
process P,

editor

segment 0

data 2

segment 1

logical memory
process P,

43062
limit | base
25286 | 43062 Ji
4425 | 68348 editor
segment table
process P, 68348
data 1
72773
90003
data 2
98553
limit | base :
25286 | 43062 physical memory
8850 | 90003
segment table
process P,

I 3/5/07

CSE 30341: Operating Systems Principles

page 22

Segmentation with Paging — MULTICS

» The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

» Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a

page table for this segment

3/5/07 CSE 30341: Operating Systems Principles page 23

MULTICS Address Translation Scheme

logical address

yes

o

segment | page-—table

length base no |:d:|

STBR

segment table trap Hp _|d’

—p®—>f—>|f|d"|—>

physical
address

page table for
segment s

CSE 30341: Operating Systems Principles

memory

page 24

8.7: Intel 30386 Address Translation

» segmentation with paging for memory
management with a two-level paging scheme

logical address ‘ selector | offset ‘
| descriptor table
segment descriptor —>®<—
linear address ‘ directory ‘ page | offset | page frame
» physical address
page directory page table
» directory entry = | page table entry J

page directory ‘ T
base register

0 034 Operating

- Linux on Intel 80x86

» Uses minimal segmentation to keep memory
management implementation more portable

» Uses 6 segments:
B Kernel code
B Kernel data

B User code (shared by all user processes, using logical
addresses)

B User data (likewise shared)
B Task-state (per-process hardware context)
m LDT

» Uses 2 protection levels:
m Kernel mode
m User mode

I 3/5/07 CSE 30341: Operating Systems Principles page 26

