-I Fragmentation

» External Fragmentation — total memory space
exists to satisfy a request, but it is not contiguous

» Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

» Reduce external fragmentation by compaction

m Shuffle memory contents to place all free memory together
in one large block
B Compaction is possible only if relocation is dynamic, and is
done at execution time
m |/O problem
® Latch job in memory while it is involved in I/O
® Do I/O only into OS buffers

I 3/2/07 CSE 30341: Operating Systems Principles page 1

Paging for noncontiguous allocation

» Logical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available

» Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes)

» Divide logical memory into blocks of same size
called pages.

» Keep track of all free frames

» To run a program of size n pages, need to find n
free frames and load program

» Set up a page table to translate logical to physical
addresses

» This scheme will create internal fragmentation

3/2/07 CSE 30341: Operating Systems Principles page 2

-I Address Translation Scheme

» Address generated by CPU is divided into:

B Page number (p) — used as an index into a page table
which contains base address of each page in physical
memory

B Page offset (d) — combined with base address to define
the physical memory address that is sent to the memory
unit

I 3/2/07 CSE 30341: Operating Systems Principles page 3

Address Translation Architecture

ERE

logical
address

physical
address

v

f0000 ... 0000

d

page table

il oo

physical
memory

CSE 30341: Operating Systems Principles

page 4

Paging Example

frame
number
page O 0
01
page 1 112 1| page O
2 &8
age 2 2
pag N
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

CSE 30341: Operating Systems Principles page 5

Paging Example

0] a

1| b

2 [BE

3|d

4 | e

5| f

6| g 0|5
7 1 h 1|16
8 | i 2|1
911

10| k 312
1] 1 page table
12| m

13| n

14| o

15| p

flogical memory

i |
J
k
|
8 m
n
0
p
12
16
20 | @
b
(e
d
24 | ©
f
g
h
28

physical memory|
I 3/2/07 CSE 30341: Operating Systems Principles page 6

-I Free Frames

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 |page 0
15
e N 15 15
=a Q
page 0 16 page O 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
19 o012 19
1|13
20 2|18 20 |page 3
3120
21 new-process page table 21
(a) (b)
Before allocation After allocation

I 3/2/07 CSE 30341: Operating Systems Principles page 7

Implementation of Page Table

» Page table is kept in main memory

» Page-table base register (PTBR) points to the page
table

» Page-table length register (PRLR) indicates size of
the page table

» In this scheme every data/instruction access
requires two memory accesses. One for the page
table and one for the data/instruction.

» The two memory access problem can be solved by
the use of a special fast-lookup hardware cache

called associative memory or translation look-

aside buffers (TLBs)

3/2/07 CSE 30341: Operating Systems Principles page 8

- Associative Memory

» Associative memory — parallel search

Page # Frame #

Address translation (A", A™)

m If A" is in associative register, get frame # out
m Otherwise get frame # from page table in memory

I 3/2/07 CSE 30341: Operating Systems Principles page 9

Paging Hardware With TLB

page frame
number number
—
_-’ .
—: TLB hit physical
S l address
L Y
- f d P—m>
TLB 1
P
TLB miss
» f
- physical
memory
page table

CSE 30341: Operating Systems Principles page 10

-I Effective Access Time

» Associative Lookup = ¢ time unit
» Assume memory cycle time is 1 microsecond

» Hit ratio — percentage of times that a page
number is found in the associative registers;
ration related to number of associative
registers

» Hit ratio = o
» Effective Access Time (EAT)
EAT=(1+¢)a+(2+¢)(1—-a)

=2+ec—q

3/2/07 CSE 30341: Operating Systems Principles page 11

- Memory Protection

» Memory protection implemented by associating
protection bit with each frame

» Valid-invalid bit attached to each entry in the page
table:

m “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

B “invalid” indicates that the page is not in the process’ logical
address space

I 3/2/07 CSE 30341: Operating Systems Principles page 12

Valid (v) or Invalid (i) Bit In A Page
Table

2| page 0
00000 frame number valid—invalid bit
page 0 \ / 3| page 1
0|2|v
page 1 1 BBy 4| page 2
214 | v
age 2 5
- 3TF [TV
page 3 4 8V 6
5|19 |v
page 4 6[0]i 7| page3
10,468 page 5 7 Eond 8| page 4
12,287 page table
9| page 5
page n

CSE 30341: Operating Systems Principles page 13

Page Table Structure

» Problem is that page tables are per-process
structure and they can be large. Discuss for 64 bit
architecture.

» Hierarchical Paging

» Hashed Page Tables

» Inverted Page Tables

3/2/07 CSE 30341: Operating Systems Principles page 14

-I Hierarchical Page Tables

» Break up the logical address space into multiple
page tables

» A simple technique is a two-level page table

3/2/07 CSE 30341: Operating Systems Principles page 15

Two-Level Paging Example

A logical address (on 32-bit machine with 4K page size) is divided
into:

B a page number consisting of 20 bits

B a page offset consisting of 12 bits

» Since the page table is paged, the page number is further divided
into:

m a 10-bit page number

B a 10-bit page offset

» Thus, a logical address is as follows:

page number page offset
P, P> d
10 10 12

where p; is an index into the outer page table, and p, is the
displacement within the page of the outer page table

I 3/2/07 CSE 30341: Operating Systems Principles page 16

Two-Level Page-Table Scheme

outer page ™ 929

table . \ 900
i [l :
page of 929
page table
page table :
memory

CSE 30341: Operating Systems Principles page 17

Address-TransIation Scheme

» Address-translation scheme for a two-level 32-bit
paging architecture

logical address
Py | P2 | d

|

P

.

outer page d
table {

page of
page table

3/2/07 CSE 30341: Operating Systems Principles page 18

- Hashed Page Tables

» Common in address spaces > 32 bits

» The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

» Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

3/2/07 CSE 30341: Operating Systems Principles page 19

- Hashed Page Table

physical
logical address J' address

p d r 0] —

physical
-—-Iq|S|’T|_TIp|r|_T~- mermory

hash table

I 3/2/07 CSE 30341: Operating Systems Principles page 20

- Inverted Page Table

» One entry for each real page of memory

» Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page

» Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

» Use hash table to limit the search to one — or at most
a few — page-table entries

3/2/07 CSE 30341: Operating Systems Principles page 21

Inverted Page Table Architecture

logical :
address ‘L pg)(;smal
address :
. : physical
> pd] P d L d > memory
search l }i
pid | p

page table

CSE 30341: Operating Systems Principles page 22

