
page 13/2/07 CSE 30341: Operating Systems Principles

Fragmentation

External Fragmentation – total memory space
exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together

in one large block

 Compaction is possible only if relocation is dynamic, and is
done at execution time

 I/O problem
 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

page 23/2/07 CSE 30341: Operating Systems Principles

Paging for noncontiguous allocation

Logical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available

Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes)

Divide logical memory into blocks of same size
called pages.

Keep track of all free frames
To run a program of size n pages, need to find n

free frames and load program
Set up a page table to translate logical to physical

addresses
This scheme will create internal fragmentation

page 33/2/07 CSE 30341: Operating Systems Principles

Address Translation Scheme

Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

 Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

page 43/2/07 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 53/2/07 CSE 30341: Operating Systems Principles

Paging Example

page 63/2/07 CSE 30341: Operating Systems Principles

Paging Example

page 73/2/07 CSE 30341: Operating Systems Principles

Free Frames

Before allocation After allocation

page 83/2/07 CSE 30341: Operating Systems Principles

Implementation of Page Table

Page table is kept in main memory

Page-table base register (PTBR) points to the page
table

Page-table length register (PRLR) indicates size of
the page table

 In this scheme every data/instruction access
requires two memory accesses. One for the page
table and one for the data/instruction.

The two memory access problem can be solved by
the use of a special fast-lookup hardware cache
called associative memory or translation look-
aside buffers (TLBs)

page 93/2/07 CSE 30341: Operating Systems Principles

Associative Memory

Associative memory – parallel search

Address translation (A´, A´´)
 If A´ is in associative register, get frame # out

Otherwise get frame # from page table in memory

Page # Frame #

page 103/2/07 CSE 30341: Operating Systems Principles

Paging Hardware With TLB

page 113/2/07 CSE 30341: Operating Systems Principles

Effective Access Time

Associative Lookup = ε time unit

Assume memory cycle time is 1 microsecond

Hit ratio – percentage of times that a page
number is found in the associative registers;
ration related to number of associative
registers

Hit ratio = α

Effective Access Time (EAT)
EAT = (1 + ε) α + (2 + ε)(1 – α)

= 2 + ε – α

page 123/2/07 CSE 30341: Operating Systems Principles

Memory Protection

Memory protection implemented by associating
protection bit with each frame

Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’ logical
address space

page 133/2/07 CSE 30341: Operating Systems Principles

Valid (v) or Invalid (i) Bit In A Page
Table

page 143/2/07 CSE 30341: Operating Systems Principles

Page Table Structure

Problem is that page tables are per-process
structure and they can be large. Discuss for 64 bit
architecture.

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables

page 153/2/07 CSE 30341: Operating Systems Principles

Hierarchical Page Tables

Break up the logical address space into multiple
page tables

A simple technique is a two-level page table

page 163/2/07 CSE 30341: Operating Systems Principles

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided
into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided
into:
 a 10-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12

page 173/2/07 CSE 30341: Operating Systems Principles

Two-Level Page-Table Scheme

page 183/2/07 CSE 30341: Operating Systems Principles

Address-Translation Scheme

Address-translation scheme for a two-level 32-bit
paging architecture

page 193/2/07 CSE 30341: Operating Systems Principles

Hashed Page Tables

Common in address spaces > 32 bits

The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

page 203/2/07 CSE 30341: Operating Systems Principles

Hashed Page Table

page 213/2/07 CSE 30341: Operating Systems Principles

Inverted Page Table

One entry for each real page of memory

Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page

Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

Use hash table to limit the search to one — or at most
a few — page-table entries

page 223/2/07 CSE 30341: Operating Systems Principles

Inverted Page Table Architecture

