-I Fragmentation

» External Fragmentation — total memory space
exists to satisfy a request, but it is not contiguous

» Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

» Reduce external fragmentation by compaction

m Shuffle memory contents to place all free memory together
in one large block
B Compaction is possible only if relocation is dynamic, and is
done at execution time
m |/O problem
® Latch job in memory while it is involved in I/O
® Do I/O only into OS buffers
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Paging for noncontiguous allocation

» Logical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available

» Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes)

» Divide logical memory into blocks of same size
called pages.

» Keep track of all free frames

» To run a program of size n pages, need to find n
free frames and load program

» Set up a page table to translate logical to physical
addresses

» This scheme will create internal fragmentation
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-I Address Translation Scheme

» Address generated by CPU is divided into:

B Page number (p) — used as an index into a page table
which contains base address of each page in physical
memory

B Page offset (d) — combined with base address to define
the physical memory address that is sent to the memory
unit
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Address Translation Architecture
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Paging Example
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Paging Example
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-I Free Frames
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Implementation of Page Table

» Page table is kept in main memory

» Page-table base register (PTBR) points to the page
table

» Page-table length register (PRLR) indicates size of
the page table

» In this scheme every data/instruction access
requires two memory accesses. One for the page
table and one for the data/instruction.

» The two memory access problem can be solved by
the use of a special fast-lookup hardware cache

called associative memory or translation look-

aside buffers (TLBs)

3/2/07 CSE 30341: Operating Systems Principles page 8



- Associative Memory

» Associative memory — parallel search

Page # Frame #

Address translation (A", A™)

m If A" is in associative register, get frame # out
m Otherwise get frame # from page table in memory
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Paging Hardware With TLB
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-I Effective Access Time

» Associative Lookup = ¢ time unit
» Assume memory cycle time is 1 microsecond

» Hit ratio — percentage of times that a page
number is found in the associative registers;
ration related to number of associative
registers

» Hit ratio = o
» Effective Access Time (EAT)
EAT=(1+¢)a+(2+¢)(1—-a)

=2+ec—q
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- Memory Protection

» Memory protection implemented by associating
protection bit with each frame

» Valid-invalid bit attached to each entry in the page
table:

m “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

B “invalid” indicates that the page is not in the process’ logical
address space
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Valid (v) or Invalid (i) Bit In A Page
Table
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Page Table Structure

» Problem is that page tables are per-process
structure and they can be large. Discuss for 64 bit
architecture.

» Hierarchical Paging

» Hashed Page Tables

» Inverted Page Tables
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-I Hierarchical Page Tables

» Break up the logical address space into multiple
page tables

» A simple technique is a two-level page table
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Two-Level Paging Example

A logical address (on 32-bit machine with 4K page size) is divided
into:

B a page number consisting of 20 bits

B a page offset consisting of 12 bits

» Since the page table is paged, the page number is further divided
into:

m a 10-bit page number

B a 10-bit page offset

» Thus, a logical address is as follows:

page number page offset
P, P> d
10 10 12

where p; is an index into the outer page table, and p, is the
displacement within the page of the outer page table
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Two-Level Page-Table Scheme
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Address-TransIation Scheme

» Address-translation scheme for a two-level 32-bit
paging architecture
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- Hashed Page Tables

» Common in address spaces > 32 bits

» The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

» Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.
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- Hashed Page Table
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- Inverted Page Table

» One entry for each real page of memory

» Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page

» Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

» Use hash table to limit the search to one — or at most
a few — page-table entries
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Inverted Page Table Architecture
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