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Fragmentation

External Fragmentation – total memory space
exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together

in one large block

 Compaction is possible only if relocation is dynamic, and is
done at execution time

 I/O problem
 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers
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Paging for noncontiguous allocation

Logical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available

Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes)

Divide logical memory into blocks of same size
called pages.

Keep track of all free frames
To run a program of size n pages, need to find n

free frames and load program
Set up a page table to translate logical to physical

addresses
This scheme will create internal fragmentation
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Address Translation Scheme

Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

 Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit
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Address Translation Architecture
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Paging Example
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Paging Example
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Free Frames

Before allocation After allocation
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Implementation of Page Table

Page table is kept in main memory

Page-table base register (PTBR) points to the page
table

Page-table length register (PRLR) indicates size of
the page table

 In this scheme every data/instruction access
requires two memory accesses.  One for the page
table and one for the data/instruction.

The two memory access problem can be solved by
the use of a special fast-lookup hardware cache
called associative memory or translation look-
aside buffers (TLBs)
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Associative Memory

Associative memory – parallel search

Address translation (A´, A´´)
 If A´ is in associative register, get frame # out

Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB



page 113/2/07 CSE 30341: Operating Systems Principles

Effective Access Time

Associative Lookup = ε time unit

Assume memory cycle time is 1 microsecond

Hit ratio – percentage of times that a page
number is found in the associative registers;
ration related to number of associative
registers

Hit ratio = α

Effective Access Time (EAT)
EAT = (1 + ε) α + (2 + ε)(1 – α)

= 2 + ε – α
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Memory Protection

Memory protection implemented by associating
protection bit with each frame

Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’ logical
address space
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Valid (v) or Invalid (i) Bit In A Page
Table
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Page Table Structure

Problem is that page tables are per-process
structure and they can be large. Discuss for 64 bit
architecture.

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables
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Hierarchical Page Tables

Break up the logical address space into multiple
page tables

A simple technique is a two-level page table
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Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided
into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided
into:
 a 10-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12
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Two-Level Page-Table Scheme
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Address-Translation Scheme

Address-translation scheme for a two-level 32-bit
paging architecture
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Hashed Page Tables

Common in address spaces > 32 bits

The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.
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Hashed Page Table
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Inverted Page Table

One entry for each real page of memory

Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page

Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

Use hash table to limit the search to one — or at most
a few — page-table entries
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Inverted Page Table Architecture


