
page 12/28/07 CSE 30341: Operating Systems Principles

Chapter 8: Memory management

Memory hierarchy: Processor -> Registers, Cache
(L1, L2, L3 ..), Main memory, hard disk
 The closer to processor, the faster and expensive

Program must be brought into memory and placed
within a process for it to be run

User programs go through several steps before
being run

page 22/28/07 CSE 30341: Operating Systems Principles

Multistep Processing of a User Program

page 32/28/07 CSE 30341: Operating Systems Principles

Binding of Instructions and Data to Memory

Compile time: If memory location known a priori,
absolute code can be generated; must recompile
code if starting location changes

Load time: Must generate relocatable code if
memory location is not known at compile time

Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware
support for address maps (e.g., base and limit
registers).

Address binding of instructions and data to memory addresses can
happen at three different stages

page 42/28/07 CSE 30341: Operating Systems Principles

Loading programs

 Dynamic loading
 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 Useful when large amounts of code are needed to handle
infrequently occurring cases

 No special support from the operating system is required
implemented through program design

 Dynamic Linking
 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate
memory-resident library routine

 Stub replaces itself with the address of the routine, and executes
the routine

 Operating system needed to check if routine is in processes’
memory address

 Dynamic linking is particularly useful for libraries

page 52/28/07 CSE 30341: Operating Systems Principles

Logical vs. Physical Address Space

The concept of a logical address space that is bound
to a separate physical address space is central to
proper memory management
 Logical address – generated by the CPU; also referred to

as virtual address

 Physical address – address seen by the memory unit

Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme

page 62/28/07 CSE 30341: Operating Systems Principles

Memory-Management Unit (MMU)

Hardware device that maps virtual to physical
address

 In MMU scheme, the value in the relocation register
is added to every address generated by a user
process at the time it is sent to memory

The user program deals with logical addresses; it
never sees the real physical addresses

page 72/28/07 CSE 30341: Operating Systems Principles

Dynamic relocation using a relocation
register

MMU is a hardware component
OS manages the relocation register

page 82/28/07 CSE 30341: Operating Systems Principles

Swapping

A process can be swapped temporarily out of
memory to a backing store, and then brought back
into memory for continued execution

Backing store – fast disk large enough to
accommodate copies of all memory images for all
users; must provide direct access to these memory
images

Roll out, roll in – swapping variant used for priority-
based scheduling algorithms; lower-priority process
is swapped out so higher-priority process can be
loaded and executed

Major part of swap time is transfer time; total
transfer time is directly proportional to the amount
of memory swapped

Modified versions of swapping are found on many
systems (i.e., UNIX, Linux, and Windows)

page 92/28/07 CSE 30341: Operating Systems Principles

Schematic View of Swapping

page 102/28/07 CSE 30341: Operating Systems Principles

Contiguous Allocation

Main memory usually into two partitions:
 Resident operating system, usually held in low memory

with interrupt vector

 User processes then held in high memory

Single-partition allocation
 Relocation-register scheme used to protect user processes

from each other, and from changing operating-system code
and data

 Relocation register contains value of smallest physical
address; limit register contains range of logical addresses –
each logical address must be less than the limit register

page 112/28/07 CSE 30341: Operating Systems Principles

A base and a limit register define a
logical address space

page 122/28/07 CSE 30341: Operating Systems Principles

HW address protection with base and
limit registers

page 132/28/07 CSE 30341: Operating Systems Principles

Contiguous Allocation (Cont.)

Multiple-partition allocation
 Hole – block of available memory; holes of various size

are scattered throughout memory

 When a process arrives, it is allocated memory from a
hole large enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

page 142/28/07 CSE 30341: Operating Systems Principles

Dynamic Storage-Allocation Problem

First-fit: Allocate the first hole that is big enough

Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered by
size. Produces the smallest leftover hole.

Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

page 152/28/07 CSE 30341: Operating Systems Principles

Fragmentation

External Fragmentation – total memory space
exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together

in one large block

 Compaction is possible only if relocation is dynamic, and is
done at execution time

 I/O problem - I/O may be performed by a DMA controller
 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

