
page 12/23/07 CSE 30341: Operating Systems Principles

So far…

Discussed deadlocks, conditions for deadlocks to
happened, mechanisms to prevent deadlock and
mechanisms to avoid deadlocks
 Avoiding deadlocks means that you don’t go into an

unsafe state

page 22/23/07 CSE 30341: Operating Systems Principles

Banker’s Algorithm

Multiple instances of resources

Each process must a priori claim the maximum
amounts of resources to use.

When a process requests a resource it may have
to wait
 When a process gets all its resources it must return them

in a finite amount of time

page 32/23/07 CSE 30341: Operating Systems Principles

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types

Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj available.

Max: n x m matrix. If Max [i,j] = k, then process Pi

may request at most k instances of resource type Rj.

Allocation: n x m matrix. If Allocation[i,j] = k then Pi

is currently allocated k instances of Rj.

Need: n x m matrix. If Need[i,j] = k, then Pi may
need k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

page 42/23/07 CSE 30341: Operating Systems Principles

Safety Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively. Initialize:

Work = Available
Finish [i] = false for i = 0,1, …, n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is
in a safe state.

page 52/23/07 CSE 30341: Operating Systems Principles

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j]
= k then process Pi wants k instances of resource
type Rj.
1. If Requesti ≤ Needi go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim.
2. If Requesti ≤ Available, go to step 3. Otherwise Pi must

wait, since resources are not available.
3. Pretend to allocate requested resources to Pi by modifying

the state as follows:
Available = Available - Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

λ If safe ⇒ the resources are allocated to Pi.
λ If unsafe ⇒ Pi must wait, and the old resource-allocation state is

restored

page 62/23/07 CSE 30341: Operating Systems Principles

Example of Banker’s Algorithm

5 processes P0 through P4; 3 resource types A(10
instances), B(5 instances) and C(7 instances)

Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

page 72/23/07 CSE 30341: Operating Systems Principles

Example (Cont.)

The content of the matrix. Need is defined to be
Max – Allocation.

Need
A B C

 P0 7 4 3
 P1 1 2 2
 P2 6 0 0
 P3 0 1 1
 P4 4 3 1

The system is in a safe state since the sequence
< P1, P3, P4, P2, P0> satisfies safety criteria.

page 82/23/07 CSE 30341: Operating Systems Principles

Example P1 Request (1,0,2) (Cont.)

Check that Request ≤ Available (that is, (1,0,2) ≤
(3,3,2) ⇒ true.

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence
<P1, P3, P4, P0, P2> satisfies safety requirement.

Can request for (3,3,0) by P4 be granted?
Can request for (0,2,0) by P0 be granted?

page 92/23/07 CSE 30341: Operating Systems Principles

Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

page 102/23/07 CSE 30341: Operating Systems Principles

Single Instance of Each Resource Type

Maintain wait-for graph
 Nodes are processes.
 Pi → Pj if Pi is waiting for Pj.

Periodically invoke an algorithm that searches for a
cycle in the graph.

An algorithm to detect a cycle in a graph requires
an order of n2 operations, where n is the number of
vertices in the graph.

page 112/23/07 CSE 30341: Operating Systems Principles

Resource-Allocation Graph Corresponding wait-for graph

Resource-Allocation Graph and Wait-for
Graph

page 122/23/07 CSE 30341: Operating Systems Principles

Several Instances of a Resource Type

Available: A vector of length m indicates the
number of available resources of each type.

Allocation: An n x m matrix defines the
number of resources of each type currently
allocated to each process.

Request: An n x m matrix indicates the
current request of each process. If Request
[ij] = k, then process Pi is requesting k more
instances of resource type. Rj.

page 132/23/07 CSE 30341: Operating Systems Principles

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available
(b) For i = 0,1, …, n-1, if allocationi ≠ 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the
system is in deadlock state. Moreover, if Finish[i]
== false, then Pi is deadlocked.

page 142/23/07 CSE 30341: Operating Systems Principles

Example of Detection Algorithm

Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6
instances).

Snapshot at time T0:
AllocationRequest Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i]
= true for all i

page 152/23/07 CSE 30341: Operating Systems Principles

Example (Cont.)

P2 requests an additional instance of type C.

Request

A B C

 P0 0 0 0

 P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

State of system?
Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.

Deadlock exists, consisting of processes P1, P2, P3, and
P4.

page 162/23/07 CSE 30341: Operating Systems Principles

Detection-Algorithm Usage

When, and how often, to invoke depends on:
 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?
 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and so
we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

page 172/23/07 CSE 30341: Operating Systems Principles

Recovery from Deadlock: Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock
cycle is eliminated

 In which order should we choose to abort?
 Priority of the process

 How long process has computed, and how much longer
to completion

 Resources the process has used.

 Resources process needs to complete.

 How many processes will need to be terminated.

 Is process interactive or batch?

page 182/23/07 CSE 30341: Operating Systems Principles

Recovery from Deadlock: Resource Preemption

Selecting a victim – minimize cost.

Rollback – return to some safe state, restart process
for that state.

Starvation – same process may always be picked
as victim, include number of rollback in cost factor.

