
page 12/18/07 CSE 30341: Operating Systems Principles

Locking protocol to enforce order

Shared: Transaction can read but not write

Exclusive: Transaction can read and write

Two phase protocol to ensure serializability:
 Growing phase - transaction can obtain but not release

locks

 Shrinking phase - transaction can release lock but not
acquire new ones

 Ensures conflict serializability but is not free from
deadlocks

page 22/18/07 CSE 30341: Operating Systems Principles

Timestamp-based Protocols

Timestamp transactions: Can be real wall clock
time or logical clock

The timestamp determines the serializability order

For each data item (Q), associate two timestamps
 W-timestamp denotes largest timestamp of any

transaction that successfully executed write(Q).

 R-timestamp for read(Q)

Suppose Ti issues read(Q):
 If TS(Ti) < W-timestamp(Q), rollback Ti

 If TS(Ti) >= W-timestamp(Q), execute Ti, R-timestamp =
maximum (R-timestamp(Q) and TS(Ti))

Similarly for Ti issuing write(Q):

page 32/18/07 CSE 30341: Operating Systems Principles

Summary

So far, we covered primitives for process
synchronization

Next, we investigate deadlocks

page 42/18/07 CSE 30341: Operating Systems Principles

Chapter 7: Deadlocks

To develop a description of deadlocks,
which prevent sets of concurrent
processes from completing their tasks

To present a number of different methods
for preventing or avoiding deadlocks in a
computer system.

page 52/18/07 CSE 30341: Operating Systems Principles

The Deadlock Problem

A set of blocked processes each holding a
resource and waiting to acquire a resource held by
another process in the set.

 Example
 System has 2 tape drives.

 P1 and P2 each hold one tape drive and each needs
another one.

 Example
 semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

page 62/18/07 CSE 30341: Operating Systems Principles

System Model

Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:
 request

 use

 release

page 72/18/07 CSE 30341: Operating Systems Principles

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a
resource.

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

 No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

page 82/18/07 CSE 30341: Operating Systems Principles

Resource-Allocation Graph

V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system.

 request edge – directed edge P1 → Rj

assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

page 92/18/07 CSE 30341: Operating Systems Principles

Example of a Resource Allocation Graph

page 102/18/07 CSE 30341: Operating Systems Principles

Resource Allocation Graph With A Deadlock

page 112/18/07 CSE 30341: Operating Systems Principles

Resource Allocation Graph With A Cycle But No Deadlock

page 122/18/07 CSE 30341: Operating Systems Principles

Basic Facts

 If graph contains no cycles ⇒ no deadlock.

 If graph contains a cycle ⇒
 if only one instance per resource type, then deadlock.

 if several instances per resource type, possibility of
deadlock.

page 132/18/07 CSE 30341: Operating Systems Principles

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock
state.

Allow the system to enter a deadlock state and then
recover.

 Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX.

page 142/18/07 CSE 30341: Operating Systems Principles

Deadlock Prevention

Restrain the ways request can be made.

Mutual Exclusion – not required for sharable
resources; must hold for nonsharable resources.

Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any
other resources.
 Require process to request and be allocated all its

resources before it begins execution, or allow process to
request resources only when the process has none.

 Low resource utilization; starvation possible.

page 152/18/07 CSE 30341: Operating Systems Principles

Deadlock Prevention (Cont.)

No Preemption –
 If a process that is holding some resources requests

another resource that cannot be immediately allocated to
it, then all resources currently being held are released

 Preempted resources are added to the list of resources
for which the process is waiting

 Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

Circular Wait – impose a total ordering of all
resource types, and require that each process
requests resources in an increasing order of
enumeration

page 162/18/07 CSE 30341: Operating Systems Principles

Deadlock Avoidance

Requires that the system has some additional a
priori information available.

Simplest and most useful model requires that each
process declare the maximum number of
resources of each type that it may need

The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

Resource-allocation state is defined by the number
of available and allocated resources, and the
maximum demands of the processes

page 172/18/07 CSE 30341: Operating Systems Principles

Safe State

When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state

System is in safe state if there exists a safe
sequence of all processes

Sequence <P1, P2, …, Pn> is safe if for each Pi, the
resources that Pi can still request can be satisfied by
currently available resources + resources held by all
the Pj, with j<I
 If Pi resource needs are not immediately available, then Pi

can wait until all Pj have finished
When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate
When Pi terminates, Pi+1 can obtain its needed resources,

and so on

page 182/18/07 CSE 30341: Operating Systems Principles

Basic Facts

 If a system is in safe state ⇒ no deadlocks

 If a system is in unsafe state ⇒ possibility of
deadlock

Avoidance ⇒ ensure that a system will never enter
an unsafe state

page 192/18/07 CSE 30341: Operating Systems Principles

Safe, Unsafe , Deadlock State

