
page 12/18/07 CSE 30341: Operating Systems Principles

6.9: Atomic Transactions

 Introduce notions of databases into operating
systems
 Challenge is that some of these operations are “heavy”

and not necessarily fast

Transaction:
 A collection of operations that performs a single logical

function. For example, changing the state and moving the
process from waiting to ready state is one transaction

 Transactions are atomic with all or nothing semantics
 Committed transactions means, all the operations went

through

 Aborted transactions means, none of them went through

 You cannot be in a middle state, e.g., changed state,
removed it from waiting state but didn’t add to ready state

 When a transaction aborts, we roll back



page 22/18/07 CSE 30341: Operating Systems Principles

Storage states

Storage to implement transactions:
 Volatile storage: Does not survive system crash

 Nonvolatile storage: Survives system crashes

 Stable storage: Information is “never” lost. Uses
nonvolatile storage and replication

Log-based recovery:
 Write-ahead logging, where we write all operations into a

log in stable storage
 <transaction name, data item name, old value, new value>

 Transaction is made up of
 <Ti, starts> set of transaction logs <Ti, commit>

 If both starts and commit is there, then the transaction is
committed. Else, it is rolled back

 Logs are idempotent, you can apply it again and again in
the same order without side effects



page 32/18/07 CSE 30341: Operating Systems Principles

Checkpoints

Logs keep growing. After every failure, we’d have
to go back and replay the log. This can be time
consuming.

Checkpoint frequently
 Output all log records currently in volatile storage onto

stable storage

 Output all modified data residing in volatile storage to the
stable storage

 Output a log record <checkpoint> into stable storage

On failure, search backwards till we hit the first
checkpoint. The first transaction start from the
checkpoint (going back) is the start of replay



page 42/18/07 CSE 30341: Operating Systems Principles

Serializability

Transactions can be concurrent. Such concurrency
may cause problems depending on the interleaving
of the transactions. We introduce stricter notions of
this phenomenon in order to predict system
behavior

Schedule is an execution sequence

Serial schedule: Schedule where two concurrent
transactions follow one after the other
 For two transactions T1, T2: serial schedule is T1 then T2

or T2 then T1. For n transactions, we have n! choices, all
of which is valid

 Serial schedule cannot fully utilize the system resources
and so we want to relax the schedule: non-serial
schedule



page 52/18/07 CSE 30341: Operating Systems Principles

Conflict

We define a schedule to be in conflict if they both
operate on the same data item and one of the
operations is a write

 If there is no conflict, the schedule can be
swapped.

 If after non-conflicting swaps we reach a serial
schedule, then that schedule is called conflict
serializable



page 62/18/07 CSE 30341: Operating Systems Principles

Read(A)

Write(A)

Read(B)

Write(B)

read(A)

write(A)

read(B)

write(B)

Serial schedule

Read(A)

Write(A)

read(A)

write(A)

Read(B)

Write(B)

read(B)

write(B)

Conflict serializable
schedule



page 72/18/07 CSE 30341: Operating Systems Principles

Locking protocol to enforce order

Shared: Transaction can read but not write

Exclusive: Transaction can read and write

Two phase protocol to ensure serializability:
 Growing phase - transaction can obtain but not release

locks

 Shrinking phase - transaction can release lock but not
acquire new ones

 Ensures conflict serializability not is not free from
deadlocks



page 82/18/07 CSE 30341: Operating Systems Principles

Timestamp-based Protocols

Timestamp transactions: Can be real wall clock
time or logical clock

The timestamp determines the serializability order

For each data item (Q), associate two timestamps
 W-timestamp denotes largest timestamp of any

transaction that successfully executed write(Q).

 R-timestamp for read(Q)

Suppose Ti issues read(Q):
 If TS(Ti) < W-timestamp(Q), rollback Ti

 If TS(Ti) >= W-timestamp(Q), execute Ti, R-timestamp =
maximum (R-timestamp(Q) and TS(Ti)) 

Similarly for Ti issuing write(Q):


