
CSE 30341: Home Work Project 4

Assigned: Mar 22, 2006

Due: Apr 7, 10:40AM

Late submissions will not be accepted
Group effort

File system simulator:
In this project, we will analyze the behavior of file systems in a similar fashion to the previous

project. We will write a disk simulator which will indicate the disk access statistics. Your

simulator will read a bunch of file requests, will write the corresponding directory and file

structures to the simulated disk and then report the disk latency to run your simulation. Next

we describe each of these steps in detail

1. Step 1: Develop a disk simulator:
First we will simulate a simple disk. Your simulated disk will have the notion of cylinders,

rotational latency, seek times etc. You will maintain the current disk head position at all

times. So, when you issue a seek to a new disk location, you will calculate the time it takes

for the head to be repositioned in order to carry out the next disk access operation. We will

assume the following parameters for the disk: seek time in a track (rotational latency) – 1

ms (ave), seek time – 9 ms (ave), sectors per track – 500, total number of tracks – 1000,

sector size – 512 kb. Thus, the total disk space is 500*1000*512 = 32 GB. The operations

implemented by this step is “seek(sector)”, which moves the head from the current location

to the new location.

2. Step 2: Implement a disk scheduling algorithm:
On top of the disk described in Step 1, you will implement a disk head scheduling algorithm

discussed in the text book (e.g. SCAN). Step 3 will basically issue a number of disk seek

operations and the schedule algorithm will reschedule these operations efficiently. This step

will basically implement an operation “read (sector)” and “write(sector)”. These will be

reordered and result in various seek(sector) calls to Step 1.

3. Step 3: Implement a file system:

Next, you will implement a file system on top of this disk. Your file system will have the

notion of file directory entries and file contents. You could use something like the combined

scheme described in 11.4.3 (Figure 11.9) to layout the contents in the disk. You will keep

track of free disk sectors and directory entries to figure out which sectors should be read to

read the next bytes of the corresponding file.

4. Step 4: Replay the trace through the system:
You will replay the following access trace through your system. The traces are of the format

<file> <size> <operation> . The <file> are denoted by a number, size is in kilobytes and

operation can be Write (W), Read (R), or Delete (D). Write will write this file into the disk

(don’t worry about the contents), Read will read this particular file and Delete will delete the

file. Both R and D have no need for the <size> field. So, “1 1024 W” means, write a new file

named 1, of size 1024KB. You don’t have to worry about name collisions, assume all W

names are new. First, you will run your simulator through the following sample trace. I will

email a more eloborate trace to the class mailing list later.

1 1024000 W

2 1024000 W

1 0 D

2 0 R

3 1024 W

2 0 R

4 1024 W

5 1024 W

6 1024 W

7 1024 W

8 40960000 W

4 0 D

5 0 D

7 0 R

7 0 D

5 40960000 W

5 0 R

You will report the simulated time to run the traces through your system..

