
page 12/6/06 CSE 30341: Operating Systems Principles

Linux kernel: Processes, threads and
scheduling
Process management: Linux calls its PCB as struct
task_struct (<kernel source>/include/linux/sched.h)
 Large structure, about 1.7 KB on a 32 bit machine
 Each task’s thread_info structure it allocated at the end of

its kernel stack, its points to the task_struct

Process IDs are 0-32767 (like most UNIX). Only
possible to have 32768 concurrent tasks

Processes can be in TASK_RUNNING,
TASK_INTERRUPTIBLE,
TASK_UNINTERRUPTIBLE, TASK_ZOMBIE and
TASK_STOPPED state.



page 22/6/06 CSE 30341: Operating Systems Principles



page 32/6/06 CSE 30341: Operating Systems Principles

Process creation

Fork(), vfork() or thread()
 Linux threads are basically tasks which share data
 Fork optimizations:

 Copy-on-write (COW): Child data not cloned till modified
 Schedule child first in order to prevent parent from tripping

over COW. More on COW later in memory management
 Vfork: optimized fork where child is not allowed to modify

any data

All implemented using clone()
Kernel threads are created by other kernel threads

and run in kernel-space (does not context switch to
user space at all)



page 42/6/06 CSE 30341: Operating Systems Principles

Process creation

 Processes are created using clone() system call.
 CLONE_FILES Parent and child share open files.
 CLONE_FS Parent and child share filesystem information.
 CLONE_IDLETASK Set PID to zero (used only by the idle tasks)
 CLONE_NEWNS Create a new namespace for the child
 CLONE_PARENT Child is to have same parent as its parent
 CLONE_PTRACE Continue tracing child
 CLONE_SETTID Write the TID back to user-space
 CLONE_SETTLS Create a new TLS for the child
 CLONE_SIGHAND Parent and child share signal handlers and blocked signals
 CLONE_SYSVSEM Parent and child share System V SEM_UNDO semantics
 CLONE_THREAD Parent and child are in the same thread group
 CLONE_VFORK vfork was used and the parent will sleep until the child wakes it
 CLONE_UNTRACED Do not let the tracing process force CLONE_PTRACE on the child
 CLONE_STOP Start process in the TASK_STOPPED state
 CLONE_SETTLS Create a new TLS (thread-local storage) for the child
 CLONE_CHILD_CLEARTID Clear the TID in the child
 CLONE_CHILD_SETTID Set the TID in the child
 CLONE_PARENT_SETTID Set the TID in the parent
 CLONE_VM Parent and child share address space.



page 52/6/06 CSE 30341: Operating Systems Principles

Process scheduling

Process priority
 POSIX define nice values of -20 to +19. Larger value

means lower priority
 Real time priorities are in the range 0 to 99. Higher than

for normal processes

Time slice: allocated to each process based on its
niceness. Minimum is the time slice. Maximum is
800 ms.
 Once time slice runs out, moved to exhausted queue.

After all processes exhaust their time slice, everyone gets
new time slice.
 Instead of waiting to reassign time slices, assign time slice

before moving task to exhausted list
 Rotate pointers to move between exhausted and active
 O(1) operation



page 62/6/06 CSE 30341: Operating Systems Principles

Scheduling

O(1) scheduling - scheduling duration takes
constant time and does not depend on the number
of tasks running (compare with O(n), O(n2)
 Priority arrays - a bit mapped structure



page 72/6/06 CSE 30341: Operating Systems Principles

Scheduling

Full SMP. Each processor runs its own queue
except to load balance. Idle processors may take
processes from other processors (take the
exhausted pool in order to avoid affinity issues with
cache)

 Improved SMP affinity
Good interactive performance and fair: Kernel

keeps track of CPU use and the rate of usage
 How much time a process spent sleeping vs how much

time the process spends in a runnable state
 Takes care of processes which sleep for a while and then

hog CPU
 Interactive jobs are put in active list even if they exhaust

their time slice
Kernel is fully pre-emptible



page 82/6/06 CSE 30341: Operating Systems Principles

Real-time

Supports SCHED_FIFO and SCHED_RR. Normal
processes, SCHED_NORMAL always yield to
SCHED_FIFO and SCHED_RR.
 Linux implements soft realtime
 Performance is quite good


