
page 11/31/06 CSE 30341: Operating Systems Principles

Recap: Scheduling algorithms

First come, first serve - FCFS
Shortest Job First
Priority Scheduling
Round robin

Multi-level (different for different classes of
processes)



page 21/31/06 CSE 30341: Operating Systems Principles

Time Quantum and Context Switch
Time

Rule of thumb: 80% of CPU bursts should be shorter
than time quantum



page 31/31/06 CSE 30341: Operating Systems Principles

Multilevel Queue

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

Each queue has its own scheduling algorithm
 foreground – RR
 background – FCFS

Scheduling must be done between the queues
 Fixed priority scheduling; (i.e., serve all from foreground

then from background).  Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes; i.e.,
80% to foreground in RR

 20% to background in FCFS



page 41/31/06 CSE 30341: Operating Systems Principles

Multilevel Queue Scheduling



page 51/31/06 CSE 30341: Operating Systems Principles

Multilevel Feedback Queue

A process can move between the various queues;
aging can be implemented this way

Multilevel-feedback-queue scheduler defined by
the following parameters:
 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will

enter when that process needs service



page 61/31/06 CSE 30341: Operating Systems Principles

Example of Multilevel Feedback Queue

Three queues:
 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS

Scheduling
 A new job enters queue Q0 which is served FCFS. When

it gains CPU, job receives 8 milliseconds.  If it does not
finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16
additional milliseconds.  If it still does not complete, it is
preempted and moved to queue Q2.



page 71/31/06 CSE 30341: Operating Systems Principles

Multilevel Feedback Queues



page 81/31/06 CSE 30341: Operating Systems Principles

Multiple-Processor Scheduling

CPU scheduling more complex when multiple
CPUs are available

We concentrate scenarios with homogeneous
processors within a multiprocessor system

Multiple processor scheduling makes load sharing
possible

Asymmetric multiprocessing – only one processor
accesses the operating system data structures,
alleviating the need for data sharing
 Symmetric multiprocessing allows any processor to

schedule itself



page 91/31/06 CSE 30341: Operating Systems Principles

SMP concerns

Processor affinity: Processes leave some state
with a processor (caches). Processor affinity tries
to balance using this state with load balancing

Gang scheduling: schedule a group of
processes/threads on a group of processors all at
once (or none at all). These processes may
communicate with each other and such scheduling
might allow them all to make good progress
together.



page 101/31/06 CSE 30341: Operating Systems Principles

Real-Time Scheduling

Hard real-time systems – required to complete a
critical task within a guaranteed amount of time

Soft real-time computing – requires that critical
processes receive priority over less fortunate ones



page 111/31/06 CSE 30341: Operating Systems Principles

Thread Scheduling

Local Scheduling – How the threads library decides
which thread to put onto an available LWP

Global Scheduling – How the kernel decides which
kernel thread to run next


