
page 11/27/06 CSE 30341: Operating Systems Principles

Benefits of threads

Responsiveness - Interactive applications can be
performing two tasks at the same time (rendering,
spell checking)

Resource Sharing - Sharing resources between
threads is easy (too easy?)

Economy - Resource allocation between threads is
fast (no protection issues)

Utilization of MP Architectures - seamlessly assign
multiple threads to multiple processors (if
available). Future appears to be multi-core anyway.

page 21/27/06 CSE 30341: Operating Systems Principles

Thread types

User threads: thread management done by user-
level threads library. Kernel does not know about
these threads
 Three primary thread libraries:

 POSIX Pthreads
 Win32 threads
 Java threads

Kernel threads: Supported by the Kernel and so
more overhead than user threads
 Examples: Windows XP/2000, Solaris, Linux, Mac OS X

User threads map into kernel threads

page 31/27/06 CSE 30341: Operating Systems Principles

Multithreading Models

Many-to-One: Many user-level threads mapped to
single kernel thread
 If a thread blocks inside kernel, all the other threads

cannot run
 Examples: Solaris Green Threads, GNU Pthreads

One-to-One: Each user-level thread maps to kernel
thread

Many-to-Many: Allows many user level threads to
be mapped to many kernel threads
 Allows the operating system to create a sufficient

number of kernel threads

page 41/27/06 CSE 30341: Operating Systems Principles

Two-level Model

Similar to M:M, except that it allows a user thread
to be bound to kernel thread

Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

page 51/27/06 CSE 30341: Operating Systems Principles

Pthreads library

Discuss the sample pthread program

page 61/27/06 CSE 30341: Operating Systems Principles

Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation
Signal handling
Thread pools
Thread specific data
Scheduler activations

page 71/27/06 CSE 30341: Operating Systems Principles

Semantics of fork() and exec()

Does fork() duplicate only the calling thread or all
threads?

page 81/27/06 CSE 30341: Operating Systems Principles

Thread Cancellation

Terminating a thread before it has finished
Two general approaches:

 Asynchronous cancellation terminates the target thread
immediately

 Deferred cancellation allows the target thread to
periodically check if it should be cancelled

page 91/27/06 CSE 30341: Operating Systems Principles

Signal Handling

Signals are used in UNIX systems to notify a
process that a particular event has occurred

A signal handler is used to process signals
 Signal is generated by particular event
 Signal is delivered to a process
 Signal is handled

Options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific threa to receive all signals for the

process

page 101/27/06 CSE 30341: Operating Systems Principles

Thread Pools

Create a number of threads in a pool where
they await work

Advantages:
 Usually slightly faster to service a request with an

existing thread than create a new thread
 Allows the number of threads in the application(s) to

be bound to the size of the pool

page 111/27/06 CSE 30341: Operating Systems Principles

Thread Specific Data

Allows each thread to have its own copy of
data

Useful when you do not have control over
the thread creation process (i.e., when
using a thread pool)

page 121/27/06 CSE 30341: Operating Systems Principles

Scheduler Activations

Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

This communication allows an application to
maintain the correct number kernel threads

page 131/27/06 CSE 30341: Operating Systems Principles

Pthreads

A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization

API specifies behavior of the thread
library, implementation is up to
development of the library

Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

page 141/27/06 CSE 30341: Operating Systems Principles

Windows XP Threads

 Implements the one-to-one mapping
Each thread contains

 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

The register set, stacks, and private storage area
are known as the context of the threads

The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

page 151/27/06 CSE 30341: Operating Systems Principles

Linux Threads

Linux refers to them as tasks rather than threads
Thread creation is done through clone() system call
clone() allows a child task to share the address

space of the parent task (process)

page 161/27/06 CSE 30341: Operating Systems Principles

Java Threads

Java threads are managed by the JVM

Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

page 171/27/06 CSE 30341: Operating Systems Principles

Java Thread States

