
page 11/27/06 CSE 30341: Operating Systems Principles

Benefits of threads

Responsiveness - Interactive applications can be
performing two tasks at the same time (rendering,
spell checking)

Resource Sharing - Sharing resources between
threads is easy (too easy?)

Economy - Resource allocation between threads is
fast (no protection issues)

Utilization of MP Architectures - seamlessly assign
multiple threads to multiple processors (if
available). Future appears to be multi-core anyway.

page 21/27/06 CSE 30341: Operating Systems Principles

Thread types

User threads: thread management done by user-
level threads library. Kernel does not know about
these threads
 Three primary thread libraries:

 POSIX Pthreads
 Win32 threads
 Java threads

Kernel threads: Supported by the Kernel and so
more overhead than user threads
 Examples: Windows XP/2000, Solaris, Linux, Mac OS X

User threads map into kernel threads

page 31/27/06 CSE 30341: Operating Systems Principles

Multithreading Models

Many-to-One: Many user-level threads mapped to
single kernel thread
 If a thread blocks inside kernel, all the other threads

cannot run
 Examples: Solaris Green Threads, GNU Pthreads

One-to-One: Each user-level thread maps to kernel
thread

Many-to-Many: Allows many user level threads to
be mapped to many kernel threads
 Allows the operating system to create a sufficient

number of kernel threads

page 41/27/06 CSE 30341: Operating Systems Principles

Two-level Model

Similar to M:M, except that it allows a user thread
to be bound to kernel thread

Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

page 51/27/06 CSE 30341: Operating Systems Principles

Pthreads library

Discuss the sample pthread program

page 61/27/06 CSE 30341: Operating Systems Principles

Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation
Signal handling
Thread pools
Thread specific data
Scheduler activations

page 71/27/06 CSE 30341: Operating Systems Principles

Semantics of fork() and exec()

Does fork() duplicate only the calling thread or all
threads?

page 81/27/06 CSE 30341: Operating Systems Principles

Thread Cancellation

Terminating a thread before it has finished
Two general approaches:

 Asynchronous cancellation terminates the target thread
immediately

 Deferred cancellation allows the target thread to
periodically check if it should be cancelled

page 91/27/06 CSE 30341: Operating Systems Principles

Signal Handling

Signals are used in UNIX systems to notify a
process that a particular event has occurred

A signal handler is used to process signals
 Signal is generated by particular event
 Signal is delivered to a process
 Signal is handled

Options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific threa to receive all signals for the

process

page 101/27/06 CSE 30341: Operating Systems Principles

Thread Pools

Create a number of threads in a pool where
they await work

Advantages:
 Usually slightly faster to service a request with an

existing thread than create a new thread
 Allows the number of threads in the application(s) to

be bound to the size of the pool

page 111/27/06 CSE 30341: Operating Systems Principles

Thread Specific Data

Allows each thread to have its own copy of
data

Useful when you do not have control over
the thread creation process (i.e., when
using a thread pool)

page 121/27/06 CSE 30341: Operating Systems Principles

Scheduler Activations

Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

This communication allows an application to
maintain the correct number kernel threads

page 131/27/06 CSE 30341: Operating Systems Principles

Pthreads

A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization

API specifies behavior of the thread
library, implementation is up to
development of the library

Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

page 141/27/06 CSE 30341: Operating Systems Principles

Windows XP Threads

 Implements the one-to-one mapping
Each thread contains

 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

The register set, stacks, and private storage area
are known as the context of the threads

The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

page 151/27/06 CSE 30341: Operating Systems Principles

Linux Threads

Linux refers to them as tasks rather than threads
Thread creation is done through clone() system call
clone() allows a child task to share the address

space of the parent task (process)

page 161/27/06 CSE 30341: Operating Systems Principles

Java Threads

Java threads are managed by the JVM

Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

page 171/27/06 CSE 30341: Operating Systems Principles

Java Thread States

