
page 11/25/06 CSE 30341: Operating Systems Principles

Recap

Processes are programs in execution. Kernel
represents a process using PCBs.

Processes transition to various states (queues).
Scheduling is the process of moving the processes
in order to achieve a global goal (better interactive
performance, throughput etc.)

page 21/25/06 CSE 30341: Operating Systems Principles

Process Creation

Parent process create children processes, which,
in turn create other processes, forming a tree of
processes

Resource sharing policies between parent & child
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

Execution model
 Parent and children execute concurrently
 Parent waits until children terminate

page 31/25/06 CSE 30341: Operating Systems Principles

Process Creation (Cont.)

Address space of child
 Child duplicate of parent
 Child has a program loaded into it

UNIX examples
 fork system call creates new process
 exec system call used after a fork to replace the process’

memory space with a new program

page 41/25/06 CSE 30341: Operating Systems Principles

Process Termination

Process executes last statement and asks the
operating system to delete it (exit)
 Output data from child to parent (via wait)
 Process’ resources are deallocated by operating system

Parent may terminate execution of children
processes (abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 If parent is exiting

 Some operating system do not allow child to continue if its
parent terminates

– All children terminated - cascading termination

page 51/25/06 CSE 30341: Operating Systems Principles

Cooperating Processes

 Independent process cannot affect or be affected
by the execution of another process

Cooperating process can affect or be affected by
the execution of another process

Producer-Consumer Problem
 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer
process
 unbounded-buffer places no practical limit on the size of the

buffer
 bounded-buffer assumes that there is a fixed buffer size

page 61/25/06 CSE 30341: Operating Systems Principles

Communications Models

messages Shared memory

page 71/25/06 CSE 30341: Operating Systems Principles

Direct Communication

Processes must name each other explicitly:
 send (P, msg) – send a message to process P
 receive(Q, msg) – receive a message from process Q

Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of

communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

page 81/25/06 CSE 30341: Operating Systems Principles

Indirect Communication

 Messages are directed and received from mailboxes (also
referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication

links
 Link may be unidirectional or bi-directional

page 91/25/06 CSE 30341: Operating Systems Principles

Synchronization

 Message passing may be either blocking or non-
blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message is

received
 Blocking receive has the receiver block until a message

is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message

and continue
 Non-blocking receive has the receiver receive a valid

message or null

page 101/25/06 CSE 30341: Operating Systems Principles

Buffering

Queue of messages attached to the link;
implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

page 111/25/06 CSE 30341: Operating Systems Principles

Chapter 4: Threads

Thread is the basic unit of CPU utilization. So far,
our implicit assumption was that each process has
a single thread of execution. However, each
process can have multiple threads of execution,
potentially working on more than one thing at the
same time

Threads in the same process share text, data,
open files, signals and other resources. Each
thread has its own execution context and stack.

page 121/25/06 CSE 30341: Operating Systems Principles

Single and Multithreaded Processes

page 131/25/06 CSE 30341: Operating Systems Principles

Benefits

Responsiveness - Interactive applications can be
performing two tasks at the same time (rendering,
spell checking)

Resource Sharing - Sharing resources between
threads is easy (too easy?)

Economy - Resource allocation between threads is
fast (no protection issues)

Utilization of MP Architectures - seamlessly assign
multiple threads to multiple processors (if
available). Future appears to be multi-core anyway.

page 141/25/06 CSE 30341: Operating Systems Principles

Thread types

User threads: thread management done by user-
level threads library. Kernel does not know about
these threads
 Three primary thread libraries:

 POSIX Pthreads
 Win32 threads
 Java threads

Kernel threads: Supported by the Kernel and so
more overhead than user threads
 Examples: Windows XP/2000, Solaris, Linux, Mac OS X

User threads map into kernel threads

page 151/25/06 CSE 30341: Operating Systems Principles

Multithreading Models

Many-to-One: Many user-level threads mapped to
single kernel thread
 If a thread blocks inside kernel, all the other threads

cannot run
 Examples: Solaris Green Threads, GNU Pthreads

One-to-One: Each user-level thread maps to kernel
thread

Many-to-Many: Allows many user level threads to
be mapped to many kernel threads
 Allows the operating system to create a sufficient

number of kernel threads

page 161/25/06 CSE 30341: Operating Systems Principles

Two-level Model

Similar to M:M, except that it allows a user thread
to be bound to kernel thread

Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

page 171/25/06 CSE 30341: Operating Systems Principles

Pthreads library

Discuss the sample pthread program

