
page 11/25/06 CSE 30341: Operating Systems Principles

Recap

Processes are programs in execution. Kernel
represents a process using PCBs.

Processes transition to various states (queues).
Scheduling is the process of moving the processes
in order to achieve a global goal (better interactive
performance, throughput etc.)

page 21/25/06 CSE 30341: Operating Systems Principles

Process Creation

Parent process create children processes, which,
in turn create other processes, forming a tree of
processes

Resource sharing policies between parent & child
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

Execution model
 Parent and children execute concurrently
 Parent waits until children terminate

page 31/25/06 CSE 30341: Operating Systems Principles

Process Creation (Cont.)

Address space of child
 Child duplicate of parent
 Child has a program loaded into it

UNIX examples
 fork system call creates new process
 exec system call used after a fork to replace the process’

memory space with a new program

page 41/25/06 CSE 30341: Operating Systems Principles

Process Termination

Process executes last statement and asks the
operating system to delete it (exit)
 Output data from child to parent (via wait)
 Process’ resources are deallocated by operating system

Parent may terminate execution of children
processes (abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 If parent is exiting

 Some operating system do not allow child to continue if its
parent terminates

– All children terminated - cascading termination

page 51/25/06 CSE 30341: Operating Systems Principles

Cooperating Processes

 Independent process cannot affect or be affected
by the execution of another process

Cooperating process can affect or be affected by
the execution of another process

Producer-Consumer Problem
 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer
process
 unbounded-buffer places no practical limit on the size of the

buffer
 bounded-buffer assumes that there is a fixed buffer size

page 61/25/06 CSE 30341: Operating Systems Principles

Communications Models

messages Shared memory

page 71/25/06 CSE 30341: Operating Systems Principles

Direct Communication

Processes must name each other explicitly:
 send (P, msg) – send a message to process P
 receive(Q, msg) – receive a message from process Q

Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of

communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

page 81/25/06 CSE 30341: Operating Systems Principles

Indirect Communication

 Messages are directed and received from mailboxes (also
referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication

links
 Link may be unidirectional or bi-directional

page 91/25/06 CSE 30341: Operating Systems Principles

Synchronization

 Message passing may be either blocking or non-
blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message is

received
 Blocking receive has the receiver block until a message

is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message

and continue
 Non-blocking receive has the receiver receive a valid

message or null

page 101/25/06 CSE 30341: Operating Systems Principles

Buffering

Queue of messages attached to the link;
implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

page 111/25/06 CSE 30341: Operating Systems Principles

Chapter 4: Threads

Thread is the basic unit of CPU utilization. So far,
our implicit assumption was that each process has
a single thread of execution. However, each
process can have multiple threads of execution,
potentially working on more than one thing at the
same time

Threads in the same process share text, data,
open files, signals and other resources. Each
thread has its own execution context and stack.

page 121/25/06 CSE 30341: Operating Systems Principles

Single and Multithreaded Processes

page 131/25/06 CSE 30341: Operating Systems Principles

Benefits

Responsiveness - Interactive applications can be
performing two tasks at the same time (rendering,
spell checking)

Resource Sharing - Sharing resources between
threads is easy (too easy?)

Economy - Resource allocation between threads is
fast (no protection issues)

Utilization of MP Architectures - seamlessly assign
multiple threads to multiple processors (if
available). Future appears to be multi-core anyway.

page 141/25/06 CSE 30341: Operating Systems Principles

Thread types

User threads: thread management done by user-
level threads library. Kernel does not know about
these threads
 Three primary thread libraries:

 POSIX Pthreads
 Win32 threads
 Java threads

Kernel threads: Supported by the Kernel and so
more overhead than user threads
 Examples: Windows XP/2000, Solaris, Linux, Mac OS X

User threads map into kernel threads

page 151/25/06 CSE 30341: Operating Systems Principles

Multithreading Models

Many-to-One: Many user-level threads mapped to
single kernel thread
 If a thread blocks inside kernel, all the other threads

cannot run
 Examples: Solaris Green Threads, GNU Pthreads

One-to-One: Each user-level thread maps to kernel
thread

Many-to-Many: Allows many user level threads to
be mapped to many kernel threads
 Allows the operating system to create a sufficient

number of kernel threads

page 161/25/06 CSE 30341: Operating Systems Principles

Two-level Model

Similar to M:M, except that it allows a user thread
to be bound to kernel thread

Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

page 171/25/06 CSE 30341: Operating Systems Principles

Pthreads library

Discuss the sample pthread program

