Language-Based Protection

- Specification of protection in a programming language allows the high-level description of policies for the allocation and use of resources.
- Language implementation can provide software for protection enforcement when automatic hardwaresupported checking is unavailable.
- Interpret protection specifications to generate calls on whatever protection system is provided by the hardware and the operating system.

Protection in Java 2

- Protection is handled by Java Virtual Machine (JVM)
- A class is assigned a protection domain when it is loaded by the JVM
- The protection domain indicates what operations the class can (and cannot) perform
- If a library method is invoked that performs a privileged operation, the stack is inspected to ensure the operation can be performed by the library

Stack Inspection

protection domain:	untrusted applet	URL loader	networking
socket permission:	none	*.lucent.com:80, connect	any
class:	gui: get(url); open(addr);	get(URL u): doPrivileged { open('proxy.lucent.com:80'); } <request from="" proxy="" u=""></request>	open(Addr a): checkPermission (a, connect); connect (a);

Chapter 15: Security - Objectives

- ▶ To discuss security threats and attacks
- ▶ To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- To describe the various countermeasures to security attacks

The Security Problem

- Security must consider external environment of the system, and protect the system resources
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Security Violations

- Categories
 - Breach of confidentiality
 - Breach of integrity
 - Breach of availability
 - Theft of service
 - Denial of service
- Methods
 - Masquerading (breach authentication)
 - Replay attack
 - Message modification
 - Man-in-the-middle attack
 - Session hijacking

Standard Security Attacks

Security Measure Levels

- Security must occur at four levels to be effective:
 - Physical
 - Human
 - Avoid social engineering, phishing, dumpster diving
 - Operating System
 - Network
- Security is as week as the weakest chain

Program Threats

- Trojan Horse
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - Spyware, pop-up browser windows, covert channels
- Trap Door
 - Specific user identifier or password that circumvents normal security procedures
 - Could be included in a compiler
- Logic Bomb
 - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)

C Program with Buffer-overflow Condition

```
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[])
 char buffer[BUFFER SIZE];
  if (argc < 2)
     return -1;
 else {
     strcpy(buffer, argv[1]);
     return 0;
```


Layout of Typical Stack Frame

Modified Shell Code

```
#include <stdio.h>
int main(int argc, char *argv[])
{
  execvp("/bin/sh","/bin/sh", NULL);
  return 0;
}
```


Hypothetical Stack Frame

4/19/06

Program Threats (Cont.)

Viruses

- Code fragment embedded in legitimate program
- Very specific to CPU architecture, operating system, applications
- Usually borne via email or as a macro
 - Visual Basic Macro to reformat hard drive

```
Sub AutoOpen()
Dim oFS
Set oFS =
   CreateObject(''Scripting.FileSystemObject'')
   vs = Shell(''c:command.com /k format
   c:'',vbHide)
End Sub
```


Program Threats (Cont.)

- Virus dropper inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses
 - File
 - Boot
 - Macro
 - Source code
 - Polymorphic
 - Encrypted
 - Stealth
 - Tunneling
 - Multipartite
 - Armored

A Boot-sector Computer Virus

System and Network Threats

- Worms use spawn mechanism; standalone program
- Internet worm
 - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
 - Grappling hook program uploaded main worm program
- Port scanning
 - Automated attempt to connect to a range of ports on one or a range of IP addresses
- Denial of Service
 - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (DDOS) come from multiple sites at once

The Morris Internet Worm

