Language-Based Protection

- Specification of protection in a programming language allows the high-level description of policies for the allocation and use of resources.

- Language implementation can provide software for protection enforcement when automatic hardware-supported checking is unavailable.

- Interpret protection specifications to generate calls on whatever protection system is provided by the hardware and the operating system.
Protection in Java 2

- Protection is handled by Java Virtual Machine (JVM)

- A class is assigned a protection domain when it is loaded by the JVM

- The protection domain indicates what operations the class can (and cannot) perform

- If a library method is invoked that performs a privileged operation, the stack is inspected to ensure the operation can be performed by the library
Stack Inspection

<table>
<thead>
<tr>
<th>protection domain:</th>
<th>untrusted applet</th>
<th>URL loader</th>
<th>networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>socket permission:</td>
<td>none</td>
<td>*.lucent.com:80, connect</td>
<td>any</td>
</tr>
<tr>
<td>class:</td>
<td>gui:</td>
<td>get(URL u):</td>
<td>open(Addr a):</td>
</tr>
<tr>
<td></td>
<td>get(url); open(addr); ...</td>
<td>doPrivileged { open('proxy.lucent.com:80'); } <request u from proxy> ...</td>
<td>checkPermission (a, connect); connect (a); ...</td>
</tr>
</tbody>
</table>
Chapter 15: Security - Objectives

- To discuss security threats and attacks
- To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- To describe the various countermeasures to security attacks
The Security Problem

- Security must consider external environment of the system, and protect the system resources.
- Intruders (crackers) attempt to breach security.
- **Threat** is potential security violation.
- **Attack** is attempt to breach security.
- Attack can be accidental or malicious.
- Easier to protect against accidental than malicious misuse.
Security Violations

- **Categories**
 - Breach of confidentiality
 - Breach of integrity
 - Breach of availability
 - Theft of service
 - Denial of service

- **Methods**
 - Masquerading (breach authentication)
 - Replay attack
 - Message modification
 - Man-in-the-middle attack
 - Session hijacking
Standard Security Attacks

1. Normal
 - Sender
 - Communication
 - Receiver

2. Masquerading
 - Sender
 - Communication
 - Attacker
 - Communication
 - Receiver

3. Man-in-the-middle
 - Sender
 - Communication
 - Attacker
 - Communication
 - Receiver
Security Measure Levels

- Security must occur at four levels to be effective:
 - Physical
 - Human
 - Avoid social engineering, phishing, dumpster diving
 - Operating System
 - Network

- Security is as weak as the weakest link.
Program Threats

- **Trojan Horse**
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - **Spyware, pop-up browser windows, covert channels**

- **Trap Door**
 - Specific user identifier or password that circumvents normal security procedures
 - Could be included in a compiler

- **Logic Bomb**
 - Program that initiates a security incident under certain circumstances

- **Stack and Buffer Overflow**
 - Exploits a bug in a program (overflow either the stack or memory buffers)
C Program with Buffer-overflow Condition

```c
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[]) {
    char buffer[BUFFER SIZE];
    if (argc < 2)
        return -1;
    else {
        strcpy(buffer, argv[1]);
        return 0;
    }
}
```
Layout of Typical Stack Frame

- **frame pointer**
- **bottom**
- **top**

- **return address**
- **saved frame pointer**
- **automatic variables**
- **parameter(s)**

The stack frame grows from the bottom towards the top.
Modified Shell Code

```c
#include <stdio.h>
int main(int argc, char *argv[])
{
    execvp("/bin/sh","/bin/sh", NULL);
    return 0;
}
```
Hypothetical Stack Frame

(a) Before attack

(b) After attack

- return address
- saved frame pointer
- buffer(BUFFER_SIZE - 1)
- ... (empty)
- buffer(1)
- buffer(0)

- address of modified shell code
- NO_OP
- ... (empty)

Copied from buffer (BUFFER_SIZE - 1) to modified shell code.
Program Threats (Cont.)

- Viruses
 - Code fragment embedded in legitimate program
 - Very specific to CPU architecture, operating system, applications
 - Usually borne via email or as a macro
 - Visual Basic Macro to reformat hard drive
      ```vba
      Sub AutoOpen()
      Dim oFS
      Set oFS = CreateObject("Scripting.FileSystemObject")
      vs = Shell("c:command.com /k format c:", vbHide)
      End Sub
      ```
Program Threats (Cont.)

- **Virus dropper** inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses
 - File
 - Boot
 - Macro
 - Source code
 - Polymorphic
 - Encrypted
 - Stealth
 - Tunneling
 - Multipartite
 - Armored
A Boot-sector Computer Virus

- Virus copies boot sector to unused location X
- Virus replaces original boot block with itself
- At system boot, virus decreases physical memory, hides in memory above new limit
- Virus attaches to disk read-write interrupt, monitors all disk activity
- Whenever new removable R/W disk is installed, it infects that as well
- It blocks any attempts of other programs to write the boot sector
- It has a logic bomb to wreak havoc at a certain date
System and Network Threats

- Worms – use *spawn* mechanism; standalone program
- Internet worm
 - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
 - **Grappling hook** program uploaded main worm program
- Port scanning
 - Automated attempt to connect to a range of ports on one or a range of IP addresses
- Denial of Service
 - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (**DDOS**) come from multiple sites at once
The Morris Internet Worm

- Grappling hook
- Worm

Target system

- rsh attack
- Finger attack
- Sendmail attack
- Request for worm

Infected system

- Worm sent