
page 14/2/06 CSE 30341: Operating Systems Principles

Selecting a Disk-Scheduling Algorithm

SSTF is common and has a natural appeal
SCAN and C-SCAN perform better for systems that

place a heavy load on the disk.
Performance depends on the number and types of

requests.
Requests for disk service can be influenced by the

file-allocation method.
The disk-scheduling algorithm should be written as

a separate module of the operating system,
allowing it to be replaced with a different algorithm
if necessary.

Either SSTF or LOOK is a reasonable choice for
the default algorithm.

page 24/2/06 CSE 30341: Operating Systems Principles

Disk Management

Low-level formatting, or physical formatting —
Dividing a disk into sectors that the disk controller
can read and write.

To use a disk to hold files, the operating system
still needs to record its own data structures on the
disk.
 Partition the disk into one or more groups of cylinders.
 Logical formatting or “making a file system”.

Boot block initializes system.
 The bootstrap is stored in ROM.
 Bootstrap loader program.

Methods such as sector sparing used to handle
bad blocks.

page 34/2/06 CSE 30341: Operating Systems Principles

Booting from a Disk in Windows 2000

page 44/2/06 CSE 30341: Operating Systems Principles

Swap-Space Management

Swap-space — Virtual memory uses disk space as
an extension of main memory.

Swap-space can be carved out of the normal file
system,or, more commonly, it can be in a separate
disk partition.

Swap-space management
 4.3BSD allocates swap space when process starts; holds

text segment (the program) and data segment.
 Kernel uses swap maps to track swap-space use.
 Solaris 2 allocates swap space only when a page is

forced out of physical memory, not when the virtual
memory page is first created.

page 54/2/06 CSE 30341: Operating Systems Principles

RAID Structure

RAID – multiple disk drives provides reliability via
redundancy.

RAID is arranged into six different levels.

page 64/2/06 CSE 30341: Operating Systems Principles

RAID (cont)

Several improvements in disk-use techniques
involve the use of multiple disks working
cooperatively.

Disk striping uses a group of disks as one storage
unit.

RAID schemes improve performance and improve
the reliability of the storage system by storing
redundant data.
 Mirroring or shadowing keeps duplicate of each disk.
 Block interleaved parity uses much less redundancy.

page 74/2/06 CSE 30341: Operating Systems Principles

RAID Levels

page 84/2/06 CSE 30341: Operating Systems Principles

RAID (0 + 1) and (1 + 0)

page 94/2/06 CSE 30341: Operating Systems Principles

Stable-Storage Implementation

Write-ahead log scheme requires stable storage.

To implement stable storage:
 Replicate information on more than one nonvolatile

storage media with independent failure modes.
 Update information in a controlled manner to ensure that

we can recover the stable data after any failure during
data transfer or recovery.

page 104/2/06 CSE 30341: Operating Systems Principles

Chapter 13: I/O Systems - Objectives

Explore the structure of an operating system’s I/O
subsystem

Discuss the principles of I/O hardware and its
complexity

Provide details of the performance aspects of I/O
hardware and software

page 114/2/06 CSE 30341: Operating Systems Principles

I/O Hardware

 Incredible variety of I/O devices
Common concepts

 Port
 Bus (daisy chain or shared direct access)
 Controller (host adapter)

 I/O instructions control devices
Devices have addresses, used by

 Direct I/O instructions
 Memory-mapped I/O

page 124/2/06 CSE 30341: Operating Systems Principles

A Typical PC Bus Structure

page 134/2/06 CSE 30341: Operating Systems Principles

Polling

Determines state of device
 command-ready
 busy
 Error

Busy-wait cycle to wait for I/O from device

page 144/2/06 CSE 30341: Operating Systems Principles

Interrupts

CPU Interrupt-request line triggered by I/O
device

 Interrupt handler receives interrupts

Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct
handler
 Based on priority
 Some nonmaskable

 Interrupt mechanism also used for exceptions

page 154/2/06 CSE 30341: Operating Systems Principles

Interrupt-Driven I/O Cycle

page 164/2/06 CSE 30341: Operating Systems Principles

Direct Memory Access

Used to avoid programmed I/O for large data
movement

Requires DMA controller

Bypasses CPU to transfer data directly between
I/O device and memory

page 174/2/06 CSE 30341: Operating Systems Principles

Six Step Process to Perform DMA Transfer

page 184/2/06 CSE 30341: Operating Systems Principles

Application I/O Interface

 I/O system calls encapsulate device behaviors in
generic classes

Device-driver layer hides differences among I/O
controllers from kernel

Devices vary in many dimensions
 Character-stream or block
 Sequential or random-access
 Sharable or dedicated
 Speed of operation
 read-write, read only, or write only

page 194/2/06 CSE 30341: Operating Systems Principles

A Kernel I/O Structure

page 204/2/06 CSE 30341: Operating Systems Principles

Characteristics of I/O Devices

page 214/2/06 CSE 30341: Operating Systems Principles

Block and Character Devices

Block devices include disk drives
 Commands include read, write, seek
 Raw I/O or file-system access
 Memory-mapped file access possible

Character devices include keyboards, mice, serial
ports
 Commands include get, put
 Libraries layered on top allow line editing

page 224/2/06 CSE 30341: Operating Systems Principles

Blocking and Nonblocking I/O

Blocking - process suspended until I/O completed
 Easy to use and understand
 Insufficient for some needs

Nonblocking - I/O call returns as much as
available
 User interface, data copy (buffered I/O)
 Implemented via multi-threading
 Returns quickly with count of bytes read or written

Asynchronous - process runs while I/O executes
 Difficult to use
 I/O subsystem signals process when I/O completed

page 234/2/06 CSE 30341: Operating Systems Principles

Two I/O Methods

Synchronous Asynchronous

page 244/2/06 CSE 30341: Operating Systems Principles

Kernel I/O Subsystem

Scheduling
 Some I/O request ordering via per-device queue
 Some OSs try fairness

Buffering - store data in memory while transferring
between devices
 To cope with device speed mismatch
 To cope with device transfer size mismatch
 To maintain “copy semantics”

page 254/2/06 CSE 30341: Operating Systems Principles

Kernel I/O Subsystem

Caching - fast memory holding copy of data
 Always just a copy
 Key to performance

Spooling - hold output for a device
 If device can serve only one request at a time
 i.e., Printing

Device reservation - provides exclusive access to
a device
 System calls for allocation and deallocation
 Watch out for deadlock

page 264/2/06 CSE 30341: Operating Systems Principles

Error Handling

OS can recover from disk read, device unavailable,
transient write failures

Most return an error number or code when I/O
request fails

System error logs hold problem reports

page 274/2/06 CSE 30341: Operating Systems Principles

I/O Protection

User process may accidentally or purposefully
attempt to disrupt normal operation via illegal I/O
instructions
 All I/O instructions defined to be privileged
 I/O must be performed via system calls

 Memory-mapped and I/O port memory locations must be
protected too

page 284/2/06 CSE 30341: Operating Systems Principles

Kernel Data Structures

Kernel keeps state info for I/O components,
including open file tables, network connections,
character device state

Many, many complex data structures to track
buffers, memory allocation, “dirty” blocks

Some use object-oriented methods and message
passing to implement I/O

page 294/2/06 CSE 30341: Operating Systems Principles

I/O Requests to Hardware Operations

Consider reading a file from disk for a process:

 Determine device holding file
 Translate name to device representation
 Physically read data from disk into buffer
 Make data available to requesting process
 Return control to process

page 304/2/06 CSE 30341: Operating Systems Principles

Improving Performance

Reduce number of context switches
Reduce data copying
Reduce interrupts by using large transfers, smart

controllers, polling
Use DMA
Balance CPU, memory, bus, and I/O performance

for highest throughput

