
page 13/31/06 CSE 30341: Operating Systems Principles

Overview

Continuation from Monday (File system
implementation)

page 23/31/06 CSE 30341: Operating Systems Principles

Efficiency and Performance

Efficiency dependent on:
 disk allocation and directory algorithms
 types of data kept in file’s directory entry

Performance
 disk cache – separate section of main memory for

frequently used blocks
 free-behind and read-ahead – techniques to optimize

sequential access
 improve PC performance by dedicating section of

memory as virtual disk, or RAM disk

page 33/31/06 CSE 30341: Operating Systems Principles

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be
treated as routine memory access by mapping a
disk block to a page in memory

A file is initially read using demand paging. A page-
sized portion of the file is read from the file system
into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory
accesses.

Simplifies file access by treating file I/O through
memory rather than read() write() system calls

Also allows several processes to map the same file
allowing the pages in memory to be shared

page 43/31/06 CSE 30341: Operating Systems Principles

Memory Mapped Files

page 53/31/06 CSE 30341: Operating Systems Principles

Page Cache

A page cache caches pages rather than disk
blocks using virtual memory techniques

Memory-mapped I/O uses a page cache

Routine I/O through the file system uses the buffer
(disk) cache

This leads to the following figure

page 63/31/06 CSE 30341: Operating Systems Principles

I/O Without a Unified Buffer Cache

page 73/31/06 CSE 30341: Operating Systems Principles

Unified Buffer Cache

A unified buffer cache uses the same page cache
to cache both memory-mapped pages and ordinary
file system I/O

page 83/31/06 CSE 30341: Operating Systems Principles

I/O Using a Unified Buffer Cache

page 93/31/06 CSE 30341: Operating Systems Principles

Recovery

Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies

Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)

Recover lost file or disk by restoring data from
backup

page 103/31/06 CSE 30341: Operating Systems Principles

Log Structured File Systems

Log structured (or journaling) file systems record
each update to the file system as a transaction

All transactions are written to a log
 A transaction is considered committed once it is written

to the log
 However, the file system may not yet be updated

The transactions in the log are asynchronously
written to the file system
 When the file system is modified, the transaction is

removed from the log
 If the file system crashes, all remaining

transactions in the log must still be performed

page 113/31/06 CSE 30341: Operating Systems Principles

Disk Scheduling (Continuation from
Mass storage structure)
The operating system is responsible for using

hardware efficiently — for the disk drives, this
means having a fast access time and disk
bandwidth.

Access time has two major components
 Seek time is the time for the disk are to move the heads

to the cylinder containing the desired sector.
 Rotational latency is the additional time waiting for the

disk to rotate the desired sector to the disk head.
Minimize seek time
Seek time ≈ seek distance
Disk bandwidth is the total number of bytes

transferred, divided by the total time between the
first request for service and the completion of the
last transfer.

page 123/31/06 CSE 30341: Operating Systems Principles

Disk Scheduling (Cont.)

Several algorithms exist to schedule the servicing
of disk I/O requests.

We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

page 133/31/06 CSE 30341: Operating Systems Principles

FCFS

Illustration shows total head movement of 640 cylinders.

page 143/31/06 CSE 30341: Operating Systems Principles

SSTF

Selects the request with the minimum seek time
from the current head position.

SSTF scheduling is a form of SJF scheduling; may
cause starvation of some requests.

 Illustration shows total head movement of 236
cylinders.

page 153/31/06 CSE 30341: Operating Systems Principles

SSTF (Cont.)

page 163/31/06 CSE 30341: Operating Systems Principles

SCAN

The disk arm starts at one end of the disk, and
moves toward the other end, servicing requests
until it gets to the other end of the disk, where the
head movement is reversed and servicing
continues.

Sometimes called the elevator algorithm.
 Illustration shows total head movement of 208

cylinders.

page 173/31/06 CSE 30341: Operating Systems Principles

SCAN (Cont.)

page 183/31/06 CSE 30341: Operating Systems Principles

C-SCAN

Provides a more uniform wait time than SCAN.
The head moves from one end of the disk to the

other. servicing requests as it goes. When it
reaches the other end, however, it immediately
returns to the beginning of the disk, without
servicing any requests on the return trip.

Treats the cylinders as a circular list that wraps
around from the last cylinder to the first one.

page 193/31/06 CSE 30341: Operating Systems Principles

C-SCAN (Cont.)

page 203/31/06 CSE 30341: Operating Systems Principles

C-LOOK

Version of C-SCAN
Arm only goes as far as the last request in each

direction, then reverses direction immediately,
without first going all the way to the end of the
disk.

page 213/31/06 CSE 30341: Operating Systems Principles

C-LOOK (Cont.)

page 223/31/06 CSE 30341: Operating Systems Principles

Selecting a Disk-Scheduling Algorithm

SSTF is common and has a natural appeal
SCAN and C-SCAN perform better for systems that

place a heavy load on the disk.
Performance depends on the number and types of

requests.
Requests for disk service can be influenced by the

file-allocation method.
The disk-scheduling algorithm should be written as

a separate module of the operating system,
allowing it to be replaced with a different algorithm
if necessary.

Either SSTF or LOOK is a reasonable choice for
the default algorithm.

page 233/31/06 CSE 30341: Operating Systems Principles

Disk Management

Low-level formatting, or physical formatting —
Dividing a disk into sectors that the disk controller
can read and write.

To use a disk to hold files, the operating system
still needs to record its own data structures on the
disk.
 Partition the disk into one or more groups of cylinders.
 Logical formatting or “making a file system”.

Boot block initializes system.
 The bootstrap is stored in ROM.
 Bootstrap loader program.

Methods such as sector sparing used to handle
bad blocks.

page 243/31/06 CSE 30341: Operating Systems Principles

Booting from a Disk in Windows 2000

page 253/31/06 CSE 30341: Operating Systems Principles

Swap-Space Management

Swap-space — Virtual memory uses disk space as
an extension of main memory.

Swap-space can be carved out of the normal file
system,or, more commonly, it can be in a separate
disk partition.

Swap-space management
 4.3BSD allocates swap space when process starts; holds

text segment (the program) and data segment.
 Kernel uses swap maps to track swap-space use.
 Solaris 2 allocates swap space only when a page is

forced out of physical memory, not when the virtual
memory page is first created.

page 263/31/06 CSE 30341: Operating Systems Principles

Data Structures for Swapping on Linux
Systems

page 273/31/06 CSE 30341: Operating Systems Principles

RAID Structure

RAID – multiple disk drives provides reliability via
redundancy.

RAID is arranged into six different levels.

page 283/31/06 CSE 30341: Operating Systems Principles

RAID (cont)

Several improvements in disk-use techniques
involve the use of multiple disks working
cooperatively.

Disk striping uses a group of disks as one storage
unit.

RAID schemes improve performance and improve
the reliability of the storage system by storing
redundant data.
 Mirroring or shadowing keeps duplicate of each disk.
 Block interleaved parity uses much less redundancy.

page 293/31/06 CSE 30341: Operating Systems Principles

RAID Levels

page 303/31/06 CSE 30341: Operating Systems Principles

RAID (0 + 1) and (1 + 0)

page 313/31/06 CSE 30341: Operating Systems Principles

Stable-Storage Implementation

Write-ahead log scheme requires stable storage.

To implement stable storage:
 Replicate information on more than one nonvolatile

storage media with independent failure modes.
 Update information in a controlled manner to ensure that

we can recover the stable data after any failure during
data transfer or recovery.

