Overview: File system implementation

» Indexed allocation

» Free space management
m Bit maps
m Linked list

» Memory mapped files

3/26/06 CSE 30341: Operating Systems Principles page 1

- Indexed Allocation

» Brings all pointers together into the index block.
» Logical view.

0000 o

index table

3/26/06 CSE 30341: Operating Systems Principles page 2

Example of Indexed Allocation

AR
NG

o] 1] 2] 3[]
4] 5[] 7[]

8[] QKHD
12]13[114

2412526 127[]

directory
file index block
jeep 19

28[129[J30[131[]

~ 4

3/26/06

CSE 30341: Operating Systems Principles page 3

Indexed Allocation (Cont.)

» Need index table
» Random access

» Dynamic access without external fragmentation,
but have overhead of index block.

» Mapping from logical to physical in a file of
maximum size of 256K words and block size of 512
words. We need only 1 block for index table.

3/26/06 CSE 30341: Operating Systems Principles page 4

Indexed Allocation — Mapping (Cont.)

N\

\
outer-index

index table

3/26/06 CSE 30341: Operating Systems Principles page 5

Combined Scheme: UNIX (4K bytes per block)

mode

owners (2)

timestamps (3)

——>» data

size block count

—» data

» data

direct blocks = o

—» data

s> data -
single indirect ——»| e : > data
= $+—» data = ol
double indirect o ——> data
triple indirect - > > data
“—— data

I 3/26/06 CSE 30341: Operating Systems Principles page 6

-I Free-Space Management

» Bit vector (n blocks)

o1 2 n-1

0 = block[/] free

bit[/] = {

1 = block][/] occupied

» Block number calculation = (number of bits per
word) * (number of 0-value words) + offset of first 1
bit

3/26/06 CSE 30341: Operating Systems Principles page 7

Free-Space Management (Cont.)

» Bit map requires extra space
B Example:

block size = 212 bytes
disk size = 238 bytes (256 Gigabyte)
n = 238/212 = 226 pbjts (or 8 Mbytes)

» Easy to get contiguous files

» Linked list (free list)

B Cannot get contiguous space easily
m No waste of space

» Grouping
» Counting

3/26/06 CSE 30341: Operating Systems Principles page 8

Free-Space Management (Cont.)

» Need to protect against inconcistency:
m Pointer to free list
m Bit map
® Must be kept on disk
® Copy in memory and disk may differ
® Cannot allow for block]i] to have a situation where bit[i] = 1
in memory and bit[i] = 0 on disk
B Solution:
® Set bit[i] = 1 in disk
® Allocate block(i]
® Set bit[i] = 1 in memory

I 3/26/06 CSE 30341: Operating Systems Principles page 9

- Linked Free Space List on Disk

AT

free-space list head

20 |21 J22}) 123[]

24 125[|26[|27

28[129 J30[131[]
~_ .4

3/26/06 CSE 30341: Operating Systems Principles page 10

Efficiency and Performance

» Efficiency dependent on:
B disk allocation and directory algorithms
m types of data kept in file’s directory entry

» Performance

B disk cache — separate section of main memory for
frequently used blocks

m free-behind and read-ahead — techniques to optimize
sequential access

B improve PC performance by dedicating section of
memory as virtual disk, or RAM disk

I 3/26/06 CSE 30341: Operating Systems Principles

page 11

- Memory-Mapped Files

» Memory-mapped file I/O allows file 1/O to be
treated as routine memory access by mapping a
disk block to a page in memory

» A file is initially read using demand paging. A page-
sized portion of the file is read from the file system
into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory
accesses.

» Simplifies file access by treating file I/O through
memory rather than read() write() system calls

» Also allows several processes to map the same file
allowing the pages in memory to be shared

3/26/06 CSE 30341: Operating Systems Principles page 12

Memory Mapped Files

page 13

5
m
w £
20
||| |wfo %m
oO®
52 3
T T T T T 1 S g
L T BT 1 £
| T I a
_ [o Lo 2
IR I E | Qo
CTTr i L]
=7 LI’ 1] (]
== [I _—|_| _ =
¥ LA ¥ ¥ Yy ¥ © ®
(]
Py e <3
o ey ©
) i © 3
£ N = &
™ © o [0 < || = N W
© m| .2 0
QO o© O
] i |
Z fa\
S 2
*a 4 Y W) ++» -
I 1 T T T -
L="= - - I] 1)
B N T | 1 T
“ SRR T TR I
—_—g—_——=1 1
1

2

3

4

5

6
process A

sirtual memory

- Page Cache

» A page cache caches pages rather than disk
blocks using virtual memory techniques

» Memory-mapped |/O uses a page cache

» Routine I/O through the file system uses the buffer
(disk) cache

» This leads to the following figure

3/26/06 CSE 30341: Operating Systems Principles page 14

/0O Without a Unified Buffer Cache

/O using

memory-mapped I/O read() and write()

I

page cache

N\

buffer cache

|

file system

I 3/26/06 CSE 30341: Operating Systems Principles page 15

- Unified Buffer Cache

» A unified buffer cache uses the same page cache
to cache both memory-mapped pages and ordinary
file system I/O

3/26/06 CSE 30341: Operating Systems Principles

/O Using a Unified Buffer Cache

/O using
read() and write()

NV

buffer cache

|

file system

memory-mapped I/O

3/26/06 CSE 30341: Operating Systems Principles page 17

- Recovery

» Consistency checking — compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies

» Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)

» Recover lost file or disk by restoring data from
backup

3/26/06 CSE 30341: Operating Systems Principles page 18

Log Structured File Systems

» Log structured (or journaling) file systems record
each update to the file system as a transaction

» All transactions are written to a log

B A transaction is considered committed once it is written
to the log

B However, the file system may not yet be updated

» The transactions in the log are asynchronously
written to the file system

m When the file system is modified, the transaction is
removed from the log

» If the file system crashes, all remaining
transactions in the log must still be performed

I 3/26/06 CSE 30341: Operating Systems Principles page 19

