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Overview: File system implementation
(cont)
 Indexed allocation
Free space management

 Bit maps
 Linked list

Memory mapped files
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Indexed Allocation

Brings all pointers together into the index block.
Logical view.

index table
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Example of Indexed Allocation



page 43/26/06 CSE 30341: Operating Systems Principles

Indexed Allocation (Cont.)

Need index table
Random access
Dynamic access without external fragmentation,

but have overhead of index block.
Mapping from logical to physical in a file of

maximum size of 256K words and block size of 512
words.  We need only 1 block for index table.
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Indexed Allocation – Mapping (Cont.)

M

outer-index

index table file
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Combined Scheme:  UNIX (4K bytes per block)
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…
0 1 2 n-1

bit[i] =
6
7
8 0 ⇒ block[i] free
1  ⇒ block[i] occupied

Free-Space Management

Bit vector   (n blocks)

Block number calculation = (number of bits per
word) * (number of 0-value words) + offset of first 1
bit
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Free-Space Management (Cont.)

Bit map requires extra space
Example:

block size = 212 bytes
disk size = 238 bytes (256 Gigabyte)
n = 238/212 = 226 bits (or 8 Mbytes)

Easy to get contiguous files
Linked list (free list)

Cannot get contiguous space easily
No waste of space

Grouping
Counting



page 93/26/06 CSE 30341: Operating Systems Principles

Free-Space Management (Cont.)

Need to protect against inconcistency:
 Pointer to free list
 Bit map

 Must be kept on disk
 Copy in memory and disk may differ
 Cannot allow for block[i] to have a situation where bit[i] = 1

in memory and bit[i] = 0 on disk
 Solution:

 Set bit[i] = 1 in disk
 Allocate block[i]
 Set bit[i] = 1 in memory
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Linked Free Space List on Disk
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Efficiency and Performance

Efficiency dependent on:
 disk allocation and directory algorithms
 types of data kept in file’s directory entry

Performance
 disk cache – separate section of main memory for

frequently used blocks
 free-behind and read-ahead – techniques to optimize

sequential access
 improve PC performance by dedicating section of

memory as virtual disk, or RAM disk
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Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be
treated as routine memory access by mapping a
disk block to a page in memory

A file is initially read using demand paging. A page-
sized portion of the file is read from the file system
into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory
accesses.

Simplifies file access by treating file I/O through
memory rather than read() write() system calls

Also allows several processes to map the same file
allowing the pages in memory to be shared
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Memory Mapped Files
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Page Cache

A page cache caches pages rather than disk
blocks using virtual memory techniques

Memory-mapped I/O uses a page cache

Routine I/O through the file system uses the buffer
(disk) cache

This leads to the following figure
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I/O Without a Unified Buffer Cache
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Unified Buffer Cache

A unified buffer cache uses the same page cache
to cache both memory-mapped pages and ordinary
file system I/O
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I/O Using a Unified Buffer Cache
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Recovery

Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies

Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)

Recover lost file or disk by restoring data from
backup
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Log Structured File Systems

Log structured (or journaling) file systems record
each update to the file system as a transaction

All transactions are written to a log
  A transaction is considered committed once it is written

to the log
 However, the file system may not yet be updated

The transactions in the log are asynchronously
written to the file system
  When the file system is modified, the transaction is

removed from the log

 If the file system crashes, all remaining
transactions in the log must still be performed


