
page 13/26/06 CSE 30341: Operating Systems Principles

Overview: File system implementation
(cont)
 Indexed allocation
Free space management

 Bit maps
 Linked list

Memory mapped files



page 23/26/06 CSE 30341: Operating Systems Principles

Indexed Allocation

Brings all pointers together into the index block.
Logical view.

index table



page 33/26/06 CSE 30341: Operating Systems Principles

Example of Indexed Allocation



page 43/26/06 CSE 30341: Operating Systems Principles

Indexed Allocation (Cont.)

Need index table
Random access
Dynamic access without external fragmentation,

but have overhead of index block.
Mapping from logical to physical in a file of

maximum size of 256K words and block size of 512
words.  We need only 1 block for index table.



page 53/26/06 CSE 30341: Operating Systems Principles

Indexed Allocation – Mapping (Cont.)

M

outer-index

index table file



page 63/26/06 CSE 30341: Operating Systems Principles

Combined Scheme:  UNIX (4K bytes per block)



page 73/26/06 CSE 30341: Operating Systems Principles

…
0 1 2 n-1

bit[i] =
6
7
8 0 ⇒ block[i] free
1  ⇒ block[i] occupied

Free-Space Management

Bit vector   (n blocks)

Block number calculation = (number of bits per
word) * (number of 0-value words) + offset of first 1
bit



page 83/26/06 CSE 30341: Operating Systems Principles

Free-Space Management (Cont.)

Bit map requires extra space
Example:

block size = 212 bytes
disk size = 238 bytes (256 Gigabyte)
n = 238/212 = 226 bits (or 8 Mbytes)

Easy to get contiguous files
Linked list (free list)

Cannot get contiguous space easily
No waste of space

Grouping
Counting



page 93/26/06 CSE 30341: Operating Systems Principles

Free-Space Management (Cont.)

Need to protect against inconcistency:
 Pointer to free list
 Bit map

 Must be kept on disk
 Copy in memory and disk may differ
 Cannot allow for block[i] to have a situation where bit[i] = 1

in memory and bit[i] = 0 on disk
 Solution:

 Set bit[i] = 1 in disk
 Allocate block[i]
 Set bit[i] = 1 in memory



page 103/26/06 CSE 30341: Operating Systems Principles

Linked Free Space List on Disk



page 113/26/06 CSE 30341: Operating Systems Principles

Efficiency and Performance

Efficiency dependent on:
 disk allocation and directory algorithms
 types of data kept in file’s directory entry

Performance
 disk cache – separate section of main memory for

frequently used blocks
 free-behind and read-ahead – techniques to optimize

sequential access
 improve PC performance by dedicating section of

memory as virtual disk, or RAM disk



page 123/26/06 CSE 30341: Operating Systems Principles

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be
treated as routine memory access by mapping a
disk block to a page in memory

A file is initially read using demand paging. A page-
sized portion of the file is read from the file system
into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory
accesses.

Simplifies file access by treating file I/O through
memory rather than read() write() system calls

Also allows several processes to map the same file
allowing the pages in memory to be shared



page 133/26/06 CSE 30341: Operating Systems Principles

Memory Mapped Files



page 143/26/06 CSE 30341: Operating Systems Principles

Page Cache

A page cache caches pages rather than disk
blocks using virtual memory techniques

Memory-mapped I/O uses a page cache

Routine I/O through the file system uses the buffer
(disk) cache

This leads to the following figure



page 153/26/06 CSE 30341: Operating Systems Principles

I/O Without a Unified Buffer Cache



page 163/26/06 CSE 30341: Operating Systems Principles

Unified Buffer Cache

A unified buffer cache uses the same page cache
to cache both memory-mapped pages and ordinary
file system I/O



page 173/26/06 CSE 30341: Operating Systems Principles

I/O Using a Unified Buffer Cache



page 183/26/06 CSE 30341: Operating Systems Principles

Recovery

Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies

Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)

Recover lost file or disk by restoring data from
backup



page 193/26/06 CSE 30341: Operating Systems Principles

Log Structured File Systems

Log structured (or journaling) file systems record
each update to the file system as a transaction

All transactions are written to a log
  A transaction is considered committed once it is written

to the log
 However, the file system may not yet be updated

The transactions in the log are asynchronously
written to the file system
  When the file system is modified, the transaction is

removed from the log

 If the file system crashes, all remaining
transactions in the log must still be performed


